Does Balanced Mixture Design (BMD) Work? You Bet Your Asphalt! NJ's Experience

Presented By:

Thomas Bennert, Ph.D.

Center for Advanced Infrastructure and Transportation (CAIT)

Rutgers University

Acknowledgements

- NJDOT
 - Robert Blight, Eileen Sheehy, Bob Sauber, Sue Gresavage, Nusrat Morshed,
 Narinder Kholi, Stevenson Ganthier
- Asphalt Industry
 - Frank Fee, Ron Corun, Mike Worden
 - Wayne Byard, Mike Jopko, Keith Sterling
- Staff at Rutgers Asphalt Pavement Laboratory
 - Ed Wass, Ed Haas, Chris Ericson, Darius Pezeshki

Where It Started!

Multi-Year Status of State Highway System

Source: NJDOT Pavement Management System

NJ's Reasoning for BMD ("Performance Based Mix Design")

- Existing asphalt mixtures
 - Early 125 and 100 N_{des} mixes were dry
 - Significant cracking issues
 - Flexible (top-down); Composite (transverse)
- Traffic conditions
 - 29% increase from 1990 to 2006
 - 30% projected from 2006 to 2025
 - 99 billion miles traveled
- Climate conditions
 - Precipitation: 43 to 48 inches per year
 - Air Temperature: > 30 days over 90F;
 - > 80 days less than 32F
- Pavement conditions
 - Over 60% of NJDOT pavements are composite

Balanced Mixture Design Performance

- NJDOT began utilizing performance testing in mixture design in 2006
 - BMD Approach A
- Starting evaluating BMD after reading AAPT paper by Zhou et. al, (2007)
 - Asphalt content below, at, and above volumetric optimum
 - Different binder grades

Binder Content (%)	4.9%
VMA (%)	14.9%
G _{mm} (g/cm³)	2.712
G _{sb} (g/cm³)	2.91
Percent Passing	
19mm	100
12.5mm	95.9
9.5mm	87.3
4.75mm	50.1
2.36mm	32.9
1.18mm	25.5
0.6mm	19.9
0.3mm	13.9
0.15mm	8.7
0.075mm	6.2

Early NJ BMD Research (2006)

- Rutting (AASHTO T340)
 - As binder content increased, rutting increased
 - But magnitude lessened when binder grade improved
- Cracking (AASHTO T₃₂₁ & NJDOT B-10)
 - At below volumetric optimum and at optimum, similar fatigue properties were observed
 - At above optimum, significant improved

Early NJ BMD Research (2006)

Question?

- Have we been doing asphalt mixture design incorrectly for modified asphalt binders?
- NCHRP 9-9A
 - Hveem less emphasis on sample air voids and more emphasis on stability but recognized importance of air voids on durability.
 - Marshall (USACE) calibrated laboratory compaction effort to densification that occurred with accelerated loading sections
 - General approach taken today where field densification levels are "calibrated" to gyrations
 - But what if we have binders that are more resistant to field densification than others?

Wheelpath Densification

- Wheelpath Densification
 - Mix design assumes we want to optimize asphalt content to provide stable and durable mix after densification has taken place (i.e. ≈ 4% air voids)
 - Example: NCHRP 9-9A (Nebraska & Missouri)

State	Initial AV%	4 Yr ΔAV%	4Yr MESAL
Nebraska	9.0	-4.8%	0.068
Missouri	6.5	- 2.0%	8.4

Unmodified PMA

Wheelpath Densification

NCHRP 9-9A Data

- Pavements with neat binders consolidated at a rate 6 times more than modified binders (40 projects)
- According to volumetric mix design rules, if air voids above 4% after compaction, additional asphalt binder added
 - For same aggregate gradation; lower gyration level ≈ increased AC

20 Yr MESAL's	N _{des} (<pg76)< th=""><th>N_{des} (>PG76)</th></pg76)<>	N _{des} (>PG76)
< 0.3	50	N.A.
o.3 to 3	65	50
3 to 30	80	65
> 30	100	80

(Prowell & Brown, 2007)

NJDOT – Field Performance Comparisons

- Change in Mix Design Practice
 - Clear that performance could be improved if using modified binders with mix design procedures/criteria to encourage higher asphalt contents
- Implementation
 - Started in 2007 with performance criteria initially developed using mix testing database and "engineering judgement"
 - Tackled one issue at a time

$$SDI = SDI_0 - e^{\left(A - B \cdot C^{\ln \frac{1}{Age}}\right)}$$

NJDOT High Performance Thin Overlay (HPTO)

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 14%
 - VFA 65 78%
 - RAP ≤ 15%
 - No performance test requirements

1" Thick Lift with or without milling

- HPTO
 - Design AV = 3.5%
 - $N_{des} = 50$
 - VMA ≥ 18%
 - Min AC% ≥ 7%
 - No RAP
 - APA Rutting ≤ 4.omm
 - Overlay Tester ≥ 600 cycles

NJDOT High Performance Thin Overlay (HPTO)

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 14%
 - VFA 65 78%
 - RAP ≤ 15%
 - No performance test requirements

1" Thick Lift with or without milling

- HPTO
 - Design AV = 3.5%
 - $N_{des} = 50$
 - VMA ≥ 18%
 - Min AC% ≥ 7%
 - No RAP
 - APA Rutting ≤ 4.omm
 - Overlay Tester ≥ 600 cycles

NJDOT High Performance Thin Overlay (HPTO)

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 14%
 - VFA 65 78%
 - RAP ≤ 15%
 - No performance test requirements

Improvement of > 5 Years of Service Life

- HPTO
 - Design AV = 3.5%
 - $N_{des} = 50$
 - VMA ≥ 18%
 - Min AC% ≥ 7%
 - No RAP
 - APA Rutting ≤4.omm
 - Overlay Tester ≥ 600 cycles

Stone Matrix Asphalt (SMA) with Bituminous Rich Intermediate Course (BRIC) for Composite Pavements

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 14%
 - VFA 65 78%
 - RAP ≤ 15%
 - No performance test requirements

- SMA
 - Design AV = 3.5%
 - $N_{des} = 75$
 - VMA ≥ 17%
 - Min. AC% ≥ 6%
 - No RAP
- BRIC

Over 60% of NJDOT Pavements are Composite

Stone Matrix Asphalt (SMA) with Bituminous Rich Intermediate Course (BRIC) for Composite Pavements

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 14%
 - VFA 65 78%
 - RAP ≤ 15%
 - No performance test requirements

Combining modified asphalt mixtures as system to mitigate reflective cracking

- SMA
- BRIC
 - Design AV = 2.5%
 - $N_{des} = 50$
 - VMA ≥ 18%
 - Min AC% ≥ 7%
 - No RAP
 - APA Rutting ≤6.omm
 - Overlay Tester ≥ 700 cycles

Stone Matrix Asphalt (SMA) with Bituminous Rich Intermediate Course (BRIC) for Composite Pavements

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 14%
 - VFA 65 78%
 - RAP ≤ 15%
 - No performance test requirements

Improvement of > 10 Years of Service Life

- SMA
- BRIC
 - Design AV = 2.5%
 - $N_{des} = 50$
 - VMA ≥ 18%
 - Min AC% ≥ 7%
 - No RAP
 - APA Rutting ≤6.omm
 - Overlay Tester ≥ 700 cycles

High Recycled Asphalt Pavement (HRAP) Mixtures

Volumetric

- Design AV = 4%
- $N_{des} = 75$
- VMA ≥ 14%
- VFA 65 78%
- RAP ≤ 15%
- No performance test requirements

	Requirement			
	Surface Course		Intermed	iate Course
Test	PG 64-22	PG 76-22	PG 64-22	PG 76-22
APA @ 8,000 loading cycles (AASHTO T 340)	< 7 mm	< 4 mm	< 7 mm	< 4 mm
Overlay Tester (NJDOT B-10)	> 200 cycles	> 275 cycles	> 100 cycles	> 150 cycles

Performance criteria based on o% RAP mix

HRAP

- Design AV = 4%
- $N_{des} = 75$
- VMA ≥ 1% overVolumetric
- VFA 65 85%
- Unlimited RAP%
- Modified binders, WMA, Recycling Agents

High Recycled Asphalt Pavement (HRAP) Mixtures

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 14%
 - VFA 65 78%
 - RAP ≤ 15%
 - No performance test requirements

Addition of RAP reduces elastomeric properties. Need to increase VBE to include more virgin liquid. Compensates for lack of RAP binder transfer to virgin aggregate.

- HRAP
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 1% over
 Volumetric
 - VFA 65 85%
 - Unlimited RAP%
 - Modified binders, WMA, Recycling Agents

High Recycled Asphalt Pavement (HRAP) Mixtures

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 14%
 - VFA 65 78%
 - RAP ≤ 15%
 - No performance test requirements

Only 3 projects with significant field performance, but projected 5 to 8 years benefit

HRAP

- Design AV = 4%
- $N_{des} = 75$
- VMA ≥ 1% over
 Volumetric
- VFA 65 85%
- Unlimited RAP%
- Modified binders,WMA, RecyclingAgents

- Aging concrete pavements, when applicable, rubblized
- Utilized as base aggregate course for perpetual pavement design
 - Option #1
 - Design and construct the pavement to achieve a high stiffness, resulting in a pavement structure with minimal deflections/strains
 - Traditionally done with excessive thickness and cement treated base/subbase and subgrades
 - Option #2
 - Design/construct the asphalt materials, especially the base course, to be strain tolerant (i.e. – design the asphalt material to bend without cracking under resultant tensile strains)

Changing Design Methodology – Design Materials to Meet Structural Needs of Pavement ("Design Role Reversal")

- Evaluated maximum tensile strain with selected HMA thickness over rubblized PCC
 - Used JULEA software same in MEPDG
- Used methodology in NCHRP Report 646
- Conduct flexural beam fatigue at 400 and 800ms
 - 3 samples each
- Use 95% confidence interval with a selected # of repetitions
 - Designing HMA to meet pavement performance needs – "Role Reversal"

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 13%
 - VFA 65 78%
 - RAP ≤ 25%
 - No performance test requirements

- BRBC
 - Design AV = 3.5%
 - $N_{des} = 50$
 - VMA ≥ 13.5%
 - No RAP
 - PG76-28
 - APA Rutting ≤ 5.omm
 - Flexural Beam
 Fatigue (Based on project needs)

Example: NJ 1295, MP45 to 57.3; 23 Overpass Structures Requiring Undercutting

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 13%
 - VFA 65 78%
 - RAP ≤ 25%
 - No performance test requirements

- BRBC
 - Design AV = 3.5%
 - $N_{des} = 50$
 - VMA ≥ 13.5%
 - No RAP
 - PG76-28
 - APA Rutting ≤5.omm
 - Flexural Beam
 Fatigue (Based on project needs)

Example: NJ 1295, MP45 to 57.3; 23 Overpass Structures Requiring Undercutting

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 13%
 - VFA 65 78%
 - RAP ≤ 25%
 - No performance test requirements

Project Saved:

- Over 170,000 tons HMA
- Over 2700 round trips of delivery trucks
- Approximately \$7 million

- BRBC
 - Design AV = 3.5%
 - $N_{des} = 50$
 - VMA ≥ 13.5%
 - No RAP
 - PG76-28
 - APA Rutting ≤ 5.omm
 - Flexural Beam
 Fatigue (Based on project needs)

- Volumetric
 - Design AV = 4%
 - $N_{des} = 75$
 - VMA ≥ 13%
 - VFA 65 78%
 - RAP ≤ 25%
 - No performance test requirements

BRBC

- Design AV = 3.5%
- $N_{des} = 50$
- VMA ≥ 13.5%
- No RAP
- PG76-28
- APA Rutting ≤ 5.omm
- Flexural Beam
 Fatigue (Based on project needs)

Example: NJ 1295, MP45 to 57.3

After 10 years, 2022 saw 1st Pavement Preservation treatment

2019 BRBC – Rt 70 (Pinelands Conservation Commission)

- More aggressive design/ construction on NJ Rt 70 through conservation preserve
 - Greatly limited overlay thickness due to runoff regulations
 - Completed in 2020 and performing very well

Non-stabilized Subgrade (A-2-4)

Sample ID	Micro-	Fatigue Life
Sample ID	Strain	(Nf)
#12	400	42,514,195
#14	400	13,202,300
#15	400	16,830,701
#3	800	421,489
#16	800	201,036
#17	800	127,461
		· ·
		_ `

Final Thoughts and Conclusions

Final Thoughts and Conclusions

- Implementation of BMD (Approach A) in NJ has:
 - Resulted in improved field performance
 - Increase 5 to 10 years of service life!
 - The increase service life provides;
 - A more sustainable system
 - Allocate \$ sooner for preserving Good pavements
 - Allocate \$ rehab/reconstruct Average to Poor
- Where is it going?

Where It's Going!

Multi-Year Status of State Highway System

Source: NJDOT Pavement Management System

As Ted Lasso reminded us.. "Be curious, not judgmental..."

Thank you for your time!

Thomas Bennert, Ph.D.

Center for Advanced Infrastructure and Transportation (CAIT)

Rutgers University

bennert@soe.rutgers.edu

609-213-3312