VTrans BMD: Motivations

- 2008: Up to 50% RAP by aggregate weight required in asphalt mixtures per VT state statute.
 - 2018: Up to 3% RAS by aggregate weight added to specifications
 - 2022: State statute amended to consider other “sustainable building components” (19 VSA § 10m)
- Observed Distresses in VT Pavements
 - Rutting
 - Raveling
 - All 3 Modes of Cracking (Fatigue, Thermal, Reflective)
- Original Superpave Performance tests too complex (example: Superpave Shear Tester)
VTrans BMD: Chosen BMD Tests

• Hamburg Wheel Tracker Test (HWTT)
 – Purchased in 2015
 – Raveling distresses suspected to be moisture susceptibility related
 – Not confident in AASHTO T 283 TSR method in VT’s climate conditions
• Illinois Flexibility Index Test (I-FIT)
 – Purchased in 2017
 – NCHRP 09-57: test for looking at thermal and fatigue cracking
 – Increase in Recycled Asphalt Materials (RAM) anticipated
• Indirect Tensile Cracking Test (IDEAL-CT)
 – Purchased in 2019
 – Initially looked at as “surrogate” test to I-FIT
 • Now our “chosen” test method to evaluate cracking
Why an ILS?

- Can identify issues with current standard operating procedures (SOPs) and equipment in each lab.
- Demonstrates reproducibility of each test being considered
 - Cutting of specimens for I-FIT has been challenging.
- Increases user confidence in each test.
- Recommended as Task 4.5 per Tech Brief FHWA-HIF-22-048
- Overarching question: is Contractor data submitted with mix designs enough?

Research Approach

- Inter-Laboratory Testing with isolated machine and operator variability
- A single plant-produced sample was used for all material
- A single laboratory was the source of all gyratory compaction and initial specimen fabrication
Collecting Mix: Pike Industries | Waterford, VT
Participants

<table>
<thead>
<tr>
<th>Laboratories</th>
<th>[Different Types of] Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 4 State DOTs</td>
<td>• 4 Hamburg Machines</td>
</tr>
<tr>
<td>• 5 Contractors</td>
<td>• 3 IFIT Load Frames</td>
</tr>
<tr>
<td>• 2 Universities</td>
<td>• 3 IDEAL CT Machines</td>
</tr>
</tbody>
</table>
Perform 20+ G_{mm} [T209] tests
Perform 200+ G_{mb} [T166] tests
All Saw Cuts Necessary for iFIT

No prep for T324/Hamburg
Or
IDEAL-CT
Hamburg [AASHTO T 324]

- 45° C Water Temperature
- 20,000 Cycles
- 158 lb wheel load
Interval Plot of Average Rut Depth (mm)
95% CI for the Mean

Individual standard deviations are used to calculate the intervals.
Fracture Testing - Background

- Post-Peak Slope
- Fracture Energy (Area Under the Curve)
- Peak Strength
IFIT [AASHTO T 393]

- 25° C Specimen Temp
- 50 mm/min displacement
iFIT [AASHTO T 393]

Individual standard deviations are used to calculate the intervals.
iFIT [AASHTO T 393]

Individual standard deviations are used to calculate the intervals.
Outlier Plot of Flexibility Index (FI) vs Lab

<table>
<thead>
<tr>
<th>Lab</th>
<th>Min</th>
<th>Max</th>
<th>G</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-A</td>
<td>6.70</td>
<td>12.15</td>
<td>1.14</td>
<td>0.324</td>
</tr>
<tr>
<td>1-B</td>
<td>9.71</td>
<td>15.88</td>
<td>1.15</td>
<td>0.151</td>
</tr>
<tr>
<td>1-C</td>
<td>2.99</td>
<td>14.87</td>
<td>2.21</td>
<td>0.052</td>
</tr>
<tr>
<td>10-B</td>
<td>9.07</td>
<td>15.53</td>
<td>1.09</td>
<td>0.619</td>
</tr>
<tr>
<td>2-A</td>
<td>7.49</td>
<td>10.40</td>
<td>1.01</td>
<td>0.981</td>
</tr>
<tr>
<td>2-B</td>
<td>9.41</td>
<td>16.62</td>
<td>1.15</td>
<td>0.005</td>
</tr>
<tr>
<td>2-C</td>
<td>6.50</td>
<td>20.43</td>
<td>1.33</td>
<td>0.957</td>
</tr>
<tr>
<td>3-A</td>
<td>12.98</td>
<td>17.88</td>
<td>1.11</td>
<td>0.524</td>
</tr>
<tr>
<td>3-B</td>
<td>12.90</td>
<td>15.30</td>
<td>1.12</td>
<td>0.463</td>
</tr>
<tr>
<td>4-A</td>
<td>9.12</td>
<td>23.98</td>
<td>1.10</td>
<td>0.609</td>
</tr>
<tr>
<td>4-B</td>
<td>15.02</td>
<td>17.50</td>
<td>1.12</td>
<td>0.463</td>
</tr>
<tr>
<td>5-A</td>
<td>7.54</td>
<td>12.58</td>
<td>1.03</td>
<td>0.876</td>
</tr>
<tr>
<td>5-B</td>
<td>5.66</td>
<td>10.91</td>
<td>1.14</td>
<td>0.249</td>
</tr>
<tr>
<td>6-B</td>
<td>8.10</td>
<td>13.30</td>
<td>1.04</td>
<td>0.873</td>
</tr>
<tr>
<td>7-B</td>
<td>9.01</td>
<td>10.94</td>
<td>1.05</td>
<td>0.801</td>
</tr>
<tr>
<td>8-B</td>
<td>9.42</td>
<td>14.51</td>
<td>1.09</td>
<td>0.663</td>
</tr>
<tr>
<td>9-B</td>
<td>10.83</td>
<td>14.84</td>
<td>1.14</td>
<td>0.266</td>
</tr>
</tbody>
</table>
IDEAL-CT [ASTM 8225]

- 25° C Specimen Temp
- 50 mm/min displacement
IDEAL-CT [ASTM 8225]

Individual standard deviations are used to calculate the intervals.
IDEAL-CT [ASTM 8225]

Individual standard deviations are used to calculate the intervals.
Conclusions: Hamburg

- In all cases, the round 1 and round 2 test data were statistically equal.

- For Hamburg Wheel Tracking, all specimens met the 20,000 pass test length without a Stripping Inflection Point.

- Variability of results across all HWT tests was minimal (<3 mm) between the minimum and maximum results from all testing.
Conclusions: I-FIT + IDEAL-CT

- iFIT variability was smaller than that of IDEAL-CT testing, however both had several samples that would have been considered ‘low’ for acceptance.

- For both IDEAL-CT and iFIT testing, the fracture energy \((G_f)\) and post-peak slope \(|m|\) values were quite uniform across the dataset. In both tests, the post-peak slope was more uniform across the test devices in the 2\(^{nd}\) round of testing.
Special thanks to the Vtrans TAC Members:
Emily Parkany
Ian Anderson
Ashlie Mercado
Brandon Kipp

James Mahoney (UConn CAP Lab), Principal Investigator

and Pike Industries for allowing us to sample at Waterford
VTrans Next Steps

• For the Hamburg, no major changes are anticipated at this time…
• For the IDEAL-CT, min # of specimens & max coefficient of variance (COV) values will likely be included in final specification criteria & Policy
• Another ILS?
 – No current plans for another one facilitated/funded by VTrans, but the need exists
 – Ideas to explore…
 • Dwell/lag time
 • Water bath conditioning: bags vs. no bags
• In the meantime…
 – Investigate IDEAL-RT as “surrogate” to HWTT
 – Transition to MSCR PG binder grading system
Thank you!