

Inter-Laboratory Study (ILS) for Asphalt Pavement Performance Testing

Aaron Schwartz, PE - VTrans Alex Bernier, PE – UConn

October 26, 2023 – Northeast Asphalt User & Producers Group

VTrans BMD: Motivations

- 2008: Up to 50% RAP by aggregate weight required in asphalt mixtures per VT state statute.
 - 2018: Up to 3% RAS by aggregate weight added to specifications
 - 2022: State statute amended to consider other "sustainable building components" (19 VSA § 10m)
- Observed Distresses in VT Pavements
 - Rutting
 - Raveling
 - All 3 Modes of Cracking (Fatigue, Thermal, Reflective)
- Original Superpave Performance tests too complex (example: Superpave Shear Tester)

VTrans BMD: Chosen BMD Tests

- Hamburg Wheel Tracker Test (HWTT)
 - Purchased in 2015
 - Raveling distresses suspected to be moisture susceptibility related
 - Not confident in AASHTO T 283 TSR method in VT's climate conditions
- Illinois Flexibility Index Test (I-FIT)
 - Purchased in 2017
 - NCHRP 09-57: test for looking at thermal and fatigue cracking
 - Increase in Recycled Asphalt Materials (RAM) anticipated
- Indirect Tensile Cracking Test (IDEAL-CT)
 - Purchased in 2019
 - Initially looked at as "surrogate" test to I-FIT
 - Now our "chosen" test method to evaluate cracking

Why an ILS?

- Can identify issues with current standard operating procedures (SOPs) and equipment in each lab.
- Demonstrates reproducibility of each test being considered
 - Cutting of specimens for I-FIT has been challenging.
- Increases user confidence in each test.
- Recommended as Task 4.5 per Tech Brief FHWA-HIF-22-048
- Overarching question: is Contractor data submitted with mix designs enough?

Table 1. Eight Potential Tasks for BMD Implementation.

Task		Sub- Task	Description	
1	Motivations and Benefits	_	_	
2	Overall Planning	2.1	Identification of Champions	
		2.2	Establishing a Stakeholders Collaboration	
		2.3	Doing Homework	
		2.4	Establishing Goals	
		2.5	Mapping the Tasks	
		2.6	Identifying Available External Technical Information and Support	
		2.7	Developing an Implementation Timeline	
	Selecting Performance Tests	3.1	Identifying Primary Modes of Distress	
3		3.2	Identifying and Assessing Performance Test Appropriateness	
		3.3	Validating the Performance Tests	
	Performance Testing Equipment: Acquiring, Managing Resources, Training, and Evaluating	4.1	Acquiring Equipment	
4		4.2	Managing Resources	
		4.3	Conducting Initial Training	
		4.4	Evaluating Performance Tests	
$\overline{}$		4.5	Conducting Inter-Laboratory Studies	
	Establishing Baseline Data	5.1	Reviewing Historical Data & Information Management System	
5		5.2	Conducting Benchmarking studies	
		5.3	Conducting Shadow Projects	
		5.4	Analyzing Production Data	
		5.5	Determining How to Adjust Asphalt Mixtures Containing Local Materials	
6	Specifications and Program Development	6.1	Sampling and Testing Plans	
		6.2	Pay Adjustment Factors (If Part of the Goals)	
		6.3	Developing Pilot Specifications and Policies	
		6.4	Conducting Pilot Projects	
		6.5	Final Analysis and Specification Revisions	
7	Training, Certifications, and Accreditations	7.1	Developing and/or Updating Training and Certification Programs	
		7.2	Establishing or Updating Laboratory Accreditation Program	
			Requirements	
8	Initial Implementation	_	-	

https://www.fhwa.dot.gov/pavement/asphalt/pubs/hif22048.pdf

Research Approach

- Inter-Laboratory Testing with isolated machine and operator variability
- A single plant-produced sample was used for all material
- A single laboratory was the source of all gyratory compaction and initial specimen fabrication

Collecting Mix: Pike Industries | Waterford, VT

Participants

Laboratories

- 4 State DOTs
- 5 Contractors
- 2 Universities

[Different Types of] Devices

- 4 Hamburg Machines
- 3 IFIT Load Frames
- 3 IDEAL CT Machines

Manufacture & Distribution

Performed 20+ G_{mm} [T209] tests Performed 200+ G_{mb} [T166] tests All Saw Cuts Necessary for iFIT

No prep for T324/Hamburg
Or
IDEAL-CT

Hamburg [AASHTO T 324]

- 45° C Water Temperature
- 20,000 Cycles
- 158 lb wheel load

Hamburg [AASHTO T 324]

Interval Plot of Average Rut Depth (mm)

95% CI for the Mean

Individual standard deviations are used to calculate the intervals.

Fracture Testing - Background

- 25° C Specimen Temp
- 50 mm/min displacement

Individual standard deviations are used to calculate the intervals.

Individual standard deviations are used to calculate the intervals.

Individual standard deviations are used to calculate the intervals.

Outlier Plot of Flexibility Index (FI) vs Make & Model of I-FIT Device

	Gru	ıbbs' Tes	t	
Make &				
Model				
of I-FIT				
Device	Min	Max	G	Р
A	6.70	23.98	2.59	0.041
В	5.66	19.53	2.19	0.695
C	2.99	20.43	1.92	0.620

Outlier Plot of Flexibility Index (FI) vs Lab

IDEAL-CT [ASTM 8225]

- 25° C Specimen Temp
- 50 mm/min displacement

IDEAL-CT [ASTM 8225]

Individual standard deviations are used to calculate the intervals.

IDEAL-CT [ASTM 8225]

Individual standard deviations are used to calculate the intervals.

Individual standard deviations are used to calculate the intervals.

Conclusions: Hamburg

- In all cases, the round 1 and round 2 test data were statistically equal
- For Hamburg Wheel Tracking, all specimens met the 20,000 pass test length without a Stripping Inflection Point
- Variability of results across all HWT tests was minimal (<3 mm) between the minimum and maximum results from all testing

Conclusions: I-FIT + IDEAL-CT

- iFIT variability was smaller than that of IDEAL-CT testing, however both had several samples that would have been considered 'low' for acceptance.
- For both IDEAL-CT and iFIT testing, the fracture energy (G_f) and post-peak slope |m| values were quite uniform across the dataset. In both tests, the post-peak slope was more uniform across the test devices in the 2nd round of testing.

Special thanks to the Vtrans TAC Members:

Emily Parkany

Ian Anderson

Ashlie Mercado

Brandon Kipp

James Mahoney (UConn CAP Lab), Principal Investigator and Pike Industries for allowing us to sample at Waterford

UCONN

VTrans Next Steps

- For the Hamburg, no major changes are anticipated at this time...
- For the IDEAL-CT, min # of specimens & max coefficient of variance (COV) values will likely be included in final specification criteria & Policy
- Another ILS?
 - No current plans for another one facilitated/funded by VTrans, but the need exists
 - Ideas to explore...
 - Dwell/lag time
 - Water bath conditioning: bags vs. no bags
- In the meantime...
 - Investigate IDEAL-RT as "surrogate" to HWTT
 - Transition to MSCR PG binder grading system

Thank you!

UCONN