Port Authority of NY & NJ’s Experience with EPDs
NEAUPG Annual Meeting

Presented By:
Darius Pezeshki, Materials Engineer, Materials Engineering Unit
10.25.2023
Outline

• Introduction

• EPDs
 - Why?
 - Background
 - Current Policy
 - Looking Ahead
Airports

Current and Completed Major Asphalt Projects

• Newark Liberty International
 - New Terminal A (2018-Current)
 - New Apron and Taxiway Areas as well as a New Redesigned Terminal Roadway System

• Teterboro
 - Rehabilitation of Runway 6-24 (2022)

• John F. Kennedy International
 - Interim Pavement Rehabilitation of Taxiway C (2022)
Clean Construction Program

In September 2020, the PANYNJ Announced its Clean Construction Program

- Incorporation of LEED and Envision-equivalent standards during infrastructure design
- Specification for low carbon concrete: reduces the required cement content in certain concrete mixes by 25%, significantly reducing its carbon intensity and allowing for lower-carbon alternatives
- Pilot projects to develop low carbon concrete and materials
- Requirement for Environmental Product Declaration: enables systematic collection of environmental data directly from construction contractors to help inform more environmentally focused material selection
- Waste matching for concrete, asphalt and soil: creates a platform for waste matching across Port Authority construction sites to reduce waste sent to landfills and the truck trips required to bring materials to and from construction sites
- Requirement for low emissions vehicles on-site: specifies that large diesel construction equipment must be Tier 4 or newer to ensure the cleanest models available are used for agency projects

The Clean Construction Program builds on our already industry-leading practices to further reduce carbon emissions from construction (embodied carbon), promote the reduction and reuse of construction and demolition waste (circular economy), and reduce the air quality impacts of construction activity.
Accomplishments to Date:

Socialized our Policy

- Outreach – Met with regional Contracting associations and material suppliers before making changes to Contract documents

Started Tracking

- Developed a Carbon Management System to calculate the Carbon Emissions based upon EPDs, and Contractor Quantity Submittals

Codified and Established Workflows

- Updated our Contract Books to include the Embodied Carbon Clause which requires the submission of database importable files (*Electronic Data Deliverables* - EDD) for quantities of incoming materials (daily yardage/tonnage tallies reported monthly) along with corresponding *EPDs* (*Environmental Product Declarations*)
EPD-Environmental Product Declaration

- Focus on incoming Construction Materials

- All new Contracts include the Embodied Carbon Clause which requires the submission of EPDs for construction materials

In order to comply with the Authority's greenhouse gas emissions reduction goals, and to quantify and reduce the impact of embodied carbon emissions, the Contractor and his subcontractors and suppliers shall comply with the EPD and EDD submittal requirements for data related to the embodied carbon of the following construction materials used in the Work of the Contract:

1. Asphalt.
2. Concrete.
3. Steel.
4. Aluminum.
5. Wood.

C. The Contractor shall submit EPDs for each of the materials listed in B. above. Non-third-party verified EPDs will be rejected.

1. EPDs shall be specific to the material, product, plant and mix used in the Work. In the absence of providing a specific EPD, the Contractor shall submit evidence that no material, product, plant or mix-specific EPD could be sourced. Evidence may be in the form of a computer screenshot showing a "No EPDs found" outcome from a query within EC3 identifying the parameters used to search. Figure 1 below is a sample of the search results for a 6000 psi (28-day) ready mix concrete from a manufacturer searched with the name field containing the word "Jersey".
Why EPDs?

- The Port Authority of NY & NJ has a goal of a 50% GHG reduction by 2030 and achieving net-zero GHG emissions by 2050

- EPDs quantify the environmental impact
Understanding EPDs

• EPDs communicate the environmental impacts of a material or product

• Developed with stakeholder input

• EPDs provide transparent information on Life-Cycle impact data which can identify areas for environmental improvement as well as encouraging industry efficiency

Understanding EPDs

Product Category Rule (PCR)
“Set of specific rules, requirements, and guidelines for developing Type III environmental product declarations for one or more categories” (ISO 14025)

Life Cycle Assessment (LCA)
“A compilation and evaluation of the inputs, outputs, and potential environmental impacts of a product system throughout its life cycle.” (ISO 14040)

Environmental Product Declaration (EPD)
“Providing quantified environmental data using predetermined parameters and, where relevant, additional environmental information” (ISO 14025)

Understanding Asphalt EPDs

- Currently, asphalt EPDs only account for the A1-A3 portion of an LCA
 A1- Materials
 A2- Transport
 A3- Production

- Work towards developing a complete LCA pavement EPD (Cradle-to-Grave)

Source: Emerald Eco Label-An Environmental Product Declaration for Asphalt Mixtures
Understanding Asphalt EPDs

Asphalt Data Requirements:

- From Asphalt Plant
 - Fuel Consumption
 - Burner
 - Hot-Oil Heater
 - Generator
 - Equipment
 - Electricity Consumption
 - Water Consumption
 - Total Tons Produced
Understanding Asphalt EPDs

Asphalt Data Requirements:

- From Mix Design
 - Material Content
 - Aggregates
 - Binder
 - RAP
 - Additives
 - Transportation Mode and Distance of Materials
 - Truck
 - Rail
 - Barge
 - Mix Production Temperature

Tilcon, Mt. Hope, NJ
Published EPD

Product Ingredients
The product ingredients as identified in the mix design are provided in the table below.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>MATERIAL</th>
<th>WEIGHT %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>Natural Stone</td>
<td>43</td>
</tr>
<tr>
<td>Aggregate</td>
<td>Natural Stone</td>
<td>15</td>
</tr>
<tr>
<td>Aggregate</td>
<td>Natural Stone</td>
<td>27</td>
</tr>
<tr>
<td>Binder</td>
<td>Unmodified + 1 terminal additive(s)</td>
<td>5</td>
</tr>
<tr>
<td>RAP</td>
<td>Recycled Asphalt Pavement</td>
<td>10</td>
</tr>
</tbody>
</table>

*Indicates that this material is a data gap. Upstream data associated with extraction and processing is not accounted for in this EPD.

TABLE 3. ENVIRONMENTAL IMPACT SUMMARY TABLE

<table>
<thead>
<tr>
<th>IMPACT CATEGORY</th>
<th>POTENTIAL IMPACT PER METRIC TONNE ASPHALT MIXTURE (PER TON ASPHALT MIXTURE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential (GWP-100)</td>
<td>55.95 (56.75) kg CO2 Equiv.</td>
</tr>
<tr>
<td>Ozone depletion potential (ODP)</td>
<td>4.79e-08 (4.33e-08) kg CFC-11 Equiv.</td>
</tr>
<tr>
<td>Eutrophication potential (EP)</td>
<td>1.18e-02 (1.07e-02) kg N Equiv.</td>
</tr>
<tr>
<td>Acidification potential (AP)</td>
<td>1.42e-01 (1.29e-01) kg SO2 Equiv.</td>
</tr>
<tr>
<td>Photochemical ozone creation potential (POCP)</td>
<td>3.37 (3.06) kg O3 Equiv.</td>
</tr>
</tbody>
</table>

TABLE 4. LIFE CYCLE IMPACT INDICATORS

<table>
<thead>
<tr>
<th>ACRONYM</th>
<th>INDICATOR</th>
<th>UNIT</th>
<th>QUANTITY PER METRIC TONNE ASPHALT MIXTURE (PER SHORT TON ASPHALT MIXTURE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP-100</td>
<td>Global warming potential, incl. (changes CO2)</td>
<td>kg CO2 Equiv.</td>
<td>35.20 (11.54)</td>
</tr>
<tr>
<td>ODP</td>
<td>Ozone depletion potential</td>
<td>kg CFC-11 Equiv.</td>
<td>1.66e-08 (1.56e-08)</td>
</tr>
<tr>
<td>EP</td>
<td>Eutrophication potential</td>
<td>kg N Equiv.</td>
<td>9.40e-03 (8.53e-03)</td>
</tr>
<tr>
<td>AP</td>
<td>Acidification potential</td>
<td>kg SO2 Equiv.</td>
<td>2.02e-02 (1.92e-02)</td>
</tr>
<tr>
<td>PCP</td>
<td>Photochemical ozone creation potential</td>
<td>kg O3 Equiv.</td>
<td>2.08 (1.88)</td>
</tr>
</tbody>
</table>
Greatest Contributors to GWP

- Material Hauling (Truck)
- Asphalt Binder Content
- Burner Fuel Consumption

Mukherjee “Update to the LCA of Asphalt Mixtures in Support of Emerald Eco Label EPD Program” April 2022
How Can We Reduce GWP?

- Use Locally Sourced Aggregates
- Reduce Aggregate Moisture
 - Moisture Management
- Lower Production Temperature
 - WMA
- Reduce Virgin Binder
 - Increase RAP
 - Balanced Mix Design
EPDs as a Procurement Aid

Where The Port Authority of NY & NJ stands:

• EPDs are required as part of the procurement of asphalt, however, no decisions made on their content

• Increase the education and communication of stakeholders

• Increase the completeness of data
 - Asphalt additive data gaps
 • Binder Additives (Polymers, etc.)
 • Mix Additives (Anti-Strip, WMA, fibers, recycling agents, rejuvenators, etc.)
Looking Ahead →

• Goal is to set GWP limits or benchmarks for PANYNJ Asphalt mixes based off local and agency-specific data
 - Go/No-Go Specification?
 - Incentive/Disincentive Specification?

• Benchmarks must be consistent and comparable, and set such that a significant percentage of local asphalt suppliers can attain them

• Performance of the material and its intended uses must be accounted for
Looking Ahead → Performance

• A material with low GWP on their cradle-to-gate EPD may produce more GWP over the life cycle of the infrastructure.

 Example:
 A material may have 15% less GWP in its EPD than benchmark. But if it’s 25% less durable, it will emit more GWP over the life cycle.

<table>
<thead>
<tr>
<th>Analysis period = 60 yrs</th>
<th>Material A</th>
<th>Material B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.85 GWP</td>
<td>1.0 GWP</td>
</tr>
<tr>
<td>15 year life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total GWP</td>
<td>3.4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Dr. John Harvey. Deriving Benchmarks for Construction Materials Based on EPDs. Buy Clean Policies and EPDs Community of Knowledge. June 6, 2023
EPDs & Performance

Research Study – Mix Design and Performance Testing

• As most states are moving towards performance-based specifications, EPDs & performance should be looked at

• Interrelationship between the EPDs of typical PANYNJ mixes and their resulting performance
 - RAP
 • 0% (Virgin), 20%, 30%
 - Short-term/Long-term Aging
 - Performance Testing
 • Stiffness (Dynamic Modulus-AASHTO T378)
 • Rutting (APA-AASHTO T340 & Repeated Loading-AASHTO T378)
 • Cracking (Overlay Tester-NJDOT B-10 & IDEAL-CT-ASTM D8225)
EPDs & Performance

Research Study – EPD Sensitivity Analysis

For a given expectation of performance, examine sensitivity of GWP to changes in mix design (A2 and A3 stay constant, but A1 changes)

- Can the same performance be achieved by varying the Asphalt Binder Replacement percentages?
- Analysis will provide a starting point to incentivize suppliers to adopt mix design practices that deliver marginally lower GWP for the same performance expectations
EPDs & Performance

Research Study – EPD Sensitivity Analysis

• Could a supplier be disqualified for reasons outside of their control?!
 Two suppliers using the same raw aggregate source, but are in different geographical locations
 • Assess the sensitivity of the GWP, for mixes from each supplier, to factors the supplier can improve on, versus factors that are beyond their control
 • Develop a “handicap factor” to GWP expressed through EPDs in our procurement decisions so that suppliers are incentivized to compete in a fair playing field
FHWA Climate Challenge

PANYNJ Low Carbon Asphalt Support

- **GOAL 1** – Comprehensive Review of Low Carbon Asphalt
 - Literature review of low carbon asphalt solutions
 - In-Place Recycling Review and LCA Quantification
 - Ranking of Carbon Reduction Solutions based on CO2e Reduction

- **GOAL 2** – Testing Plan
 - Enables a standard method of evaluating new technologies
Conclusions

• EPDs are a valuable tool for improving environmental outcomes of asphalt
 - Work towards developing EPDs that include the full pavement LCA (Cradle-to-Grave)

• Further and constant collaboration needed between asphalt industry and public agencies to improve on EPDs

• Asphalt performance and its intended uses must be accounted for
Points of Contact

- Mark Wierciszewski – Chief Materials Engineer in the Materials Engineering Unit (MEU)
 mwiercis@panynj.gov

- Dorian Bailey – Chief of Science and Clean Construction (CCU)
 dbailey@panynj.gov

- Darius Pezeshki – Materials Engineer in the Materials Engineering Unit (MEU)
 dpezeshki@panynj.gov
Thank You!