Obtaining Mix Performance with High RAP and Modified Binders

Tanya Nash, P.E.

Asphalt Testing Solutions & Engineering, LLC

North East Asphalt User Producer Group (NEAUPG) · October 27, 2021

Objectives

- RAP
 - Defining High RAP
 - Management and Best Practices
- Modified Binders
 - Classification of modifiers
 - Effects of modification
- Evaluation of Performance

What is High RAP?

- NAPA 2019 Annual Survey average percent RAP used in HMA / WMA is 21.1%
- Range of Usage
 - Ohio: Average 32%
 - Arizona: Average 9%
- NCHRP Report 927 defined high recycled binder ratios between 0.3 and 0.5

What Is Really Happening?

Heat Transfer Capability of the Plant

The 3 "Limits" to High RAP Mixes

Managing Dust in the Final Mix

Binder Characteristics in the Final Mix

#1: Heat Transfer

- High RAP Plants are often now a two-step process
- Drying and Heating
- Mixing

#2: Managing Dust

- Maintain dust/binder ratio
- Dust in the RAP is "bound" and can't be "liberated"
- Manage the dust removed from the virgin material (partial dust removal)

Several ways to do this ...

Variable Speed Air Lock at Transfer Screw Variable Speed Rotary Valve

Collection & Return Pod on Load Cells

#3: Final Binder Characteristics

Know Your RAP

Binder Characteristics

Recovered Performance of RAP and Mix

- Binder Performance Testing
- Mixture Performance Testing

No Aging RTFO (Original) (Short-Term)

PAV Aging (Long-Term)

What's Really in Your Asphalt Mix?

Chemical	Rejuvenators	Recycled	Polymers	Mixture
 Anti-Strips Warm Mix Stiffening / Softening Agents 	 Crude Oil Flux Bio Oils Corn Oils Tall Oil 	 Vacuum Tower Asphalt Extender (VTAE) Ground Tire Rubber 	 Elastomers (SBS) Plastimers (Elvaloy) Latex SBR 	 Fibers Lime GTR Pelletized Polymers RAP RAS
Anti-Strips		(GTR)	SBS	

Performance Beyond PG

- Delta Tc method for measuring the loss of relaxation properties of asphalt binders
- Ductility Ability of a material to be stretched without breaking
- Glover-Rowe simplified equation for the ductility estimated from DSR data

$$G - R = G^* (\cos \delta) \times \frac{2}{\sin \delta}$$

@ 15°C and 0.005 rad/sec

Performance Beyond PG

- Cross-Over Temperature (T_{wc}): binder transitions from a viscous material to an elastic material
 - lower the temperature the less prone the binder is to cracking
- Rheological Index (R-Value): log of the glassy modulus of the binder minus the log of the modulus where the phase angle is 45
 - Larger the **R value**, the more brittle and prone to cracking
 - NCHRP 9-59 uses BBR data to calculate

$$R = \frac{\log(\frac{S}{3000})}{\log(1-m)}$$

Recommended: 1.5 > R > 2.5

Important for the virgin binder and the blended binder

What About the Mix?

В Barber Asphalt Paving Company •Asphalt cement 12 to 15% / Sand 70 to 83% / Pulverized carbonite of lime 5 to 15% 1890 Ν D Clifford Richardson, New York Testing Company Ε •Surface sand mix: 100% passing No. 10, 15% passing No. 200, 9 to 14% asphalt 1905 •Asphaltic concrete for lower layers, VMA terminology used, 2.2% more VMA than current day mixes or ~0.9% higher binder content R •Hubbard Field Method (Charles Hubbard and Frederick Field) С **Stability** Sand asphalt design 0 1920s •30 blow, 6" diameter with compression test (performance) asphaltic concrete design (Modified HF Method) Ν Т • Francis Hveem (Caltrans) Ε •Surface area factors used to determine binder content; Hveem stabilometer and cohesionmeter used **Stability + Durability** 1927 Ν •Air voids not used initially, mixes generally drier relative to others, fatigue cracking an issue Т •Bruce Marshall, Mississippi Highway Department •Refined Hubbard Field method, standard compaction energy with drop hammer **Stability + Durability** L 1943 Initially only used air voids and VFA, VMA added in 1962; stability and flow utilized 0 W •Superpave **25 Years Without the Promised** Ε •Level 1 (volumetric) **Performance Test!** R 1993 •Levels 2 and 3 (performance based but never implemented)

http://asphaltmagazine.com/history-of-asphalt-mix-design-in-north-america-part-2/

Rutting & Moisture

- Tensile Strength Ratio AASHTO T 283
- Hamburg Wheel Tracking AASHTO T 324
- Asphalt Pavement Analyzer AASHTO T 340

Bending Beam Fatigue AASHTO T 321

tigue Texas Overlay Test TEX-248-F

Direct Tension Cyclic Fatigue, S-VECD

Fatigue (Cyclic Loading)

Texas Overlay Test

5 SCB Test - LTRC – Jc - IFIT - FI

IDEAL-CT, Nflex Factor

Superpave IDT - Energy Ratio

Cantabro

Top-Down Cracking

Low Temperature Cracking

IDT Creep Compliance AASHTO T 322

TSRST

SCB at Low Temp AASHTO TP 105 Disk Shaped Compact Tension (DCT)

Evaluate your mix

Rejuvenator Study

Evaluation Process

Phase I Preliminary Testing of Contractor's "Go-To" Superpave Design with 13 recycling agents, 3 warm mix products, 3 PG binders

Baseline Testing

Phase II Development of Performance Curves for Hot and Warm Mixtures in the study

Performance Ranking

Analysis Determination of Optimum Asphalt Content Range based on Performance

Recycling Agent Performance Evaluation

CONTROL

- 35% RAP (0.38 RBR)
- 12.5mm GA Granite | PG 67-22
- 13 Recycling Agents Aromatic (1), Veggie Oil (3), Bio-Based Oil (6), Tall Oil (3)
- 3 Warm Mixes produced at 275°C
- 3 PG binder grades: PG 52-28, 52-34, 67-22

Recycling Agent Dosage per NCHRP 9-58

 $PGH_{Blend} = (RAP_{BR} \times PGH_{RAP}) + (B_{BR} \times PGH_{Base})$

$$\% RA = \frac{(PGH_{Blend} - PGH_{Target})}{1.82^*}$$

*For aromatic extracts (A), a lower slope rate of 1.38 is recommended

Where:

- PGH_{Blend} = Continuous PG high temp. (PGH) of recycled binder blend (°C)
- RAP_{BR} = RAP binder ratio
- PGH_{RAP} = Continuous PGH of the RAP binder (°C)
- B_{BR} = Base binder ratio = 1-RBR
- *PGH*_{Base} = Continuous *PGH* of the base binder (°C)
- PGH_{Target} = Continuous PGH of target climate (°C)

Properties		Results			
I	RAP _{BR}	0.38			
PC	SH _{RAP,} °C	91.0			
	B _{BR}	0.63			
PGH _{Target,} °C		70.0			
		PG 67-22	PG 52-28		
PGH _{Base} , °C		68.5	54.5		
PGH _{Blend,} °C		77.1	68.4		
	Non-Aromatic	3.87	-0.90		
%RA	Aromatic	5.11	-1.18		

What do these "negative" numbers tell a contractor?

NCHRP 9-58 Evaluating the Effects of Recycling Agents on Asphalt Mixtures with High RAS and RAP Binder Ratios

Production Analysis

Performance Asphalt Content % (CT _{Index} = 30 min.)										
	Control	G	I.	K	L	М	Ν			
Product Name	PG 67-22	Tall Oil	Veggie Oil	PG 52-28	Warm Mix	Warm Mix	Warm Mix			
Maximum (HWT)	22.58	11.70	9.38	6.17	12.22	9.44	9.40			
Minimum (CT _{Index})	6.38	5.96	5.82	5.64	5.47	5.39	5.33			
Performance Opt.	6.9	6.5	6.4	6.2	6.0	5.9	5.9			
Dosage Efficiency		4.08	2.52	1.84	6.45	2.17	3.00			

Florida DOT Specification for Asphalt Content

• Design Target ± 0.55% before stopping production

Performance Optimum = Minimum AC + Specification Control Performance Optimum = 6.38 + 0.55 = 6.88% AC

Final Comments

- Identify what limits High RAP usage
 - Plant components
 - Binder properties
 - Mixture Properties

- \mathbf{A}
- What are the modifiers available to you
 - Approved by the agency
 - Cost
 - Knowledge

- Evaluate
 - What works for one, does not always work for another

Questions?

Tanya Nash, P.E. tnash@ats.consulting (904) 510-3072 Asphalt Testing Solutions & Engineering 7544 Philips Hwy Jacksonville, Florida 32256

