

New York Implementation of Performance-Engineered Mixtures

New York Implementation of Performance-Engineered Mixtures

Why Performance Engineered Mixes?

SuperPave System

• Our SuperPave system provides us with a solid product with limitations.

 We can improve on that system to account for those and continue to improve our pavements

SuperPave System

Improving Mixture Performance

Improving Mixture Performance

Evaluation of Asphalt Mixtures in New York State

Evaluation of Asphalt Mixtures in New York State

Establishing Proper Balance for Mixtures

Improving Mixture Performance

Improving Mixture Performance

Developing a Flexible and Robust System

U.S. Infrastructure Investment Gaps by 2040

Projected public and private infrastructure spending by sector, 2016–2040 (trillions of 2015 dollars)

Notes: Investment gap is the difference between projected investment and the investment required to match the best-performing peer countries, accounting for differences in country characteristics. Projected investment assumes the United States continues to invest at current levels and accounts for economic and population growth.

COUNCIL

Department of Performance Testing

Semi-Circular Bending Test

Cheap

IDEAL Rutting Test

https://www.hmalabsupply.com/products/idea l-rt-jig

thts://www.globalgison.com/in thest-tensie-loading-fixtures

https://www.researchgate.<mark>ne</mark>t/figure/ID EAL-cracking-test-IDEAL-CT_fig1_343785079

31

AL Cracking Test

Implementation

HMP(5 Ended on this section. I think this should detail all of our efforts to this point. This should incorporate all of our specialty mixture testing. Still need to take pictures to replace the rounds of pucks. I detail a bit of how many different things we have going right now. Figuring we do a zoom into each year and touch briefly on each effort that we worked on. Quick takeaways from each effort. Regrets and positives

Heim, Michael P (DOT), 10/4/2021

Up Until 2017

- Widespread Production Mixture Evaluation
 - Production Mixes
 - Many Regions
 - Non-Standardization of methods

Major Takeaways:

- 1. Ruggedness Testing
- 2. Designed and Targeted Testing
- 3. Closely Adhering to Specifications

Implementation

Widespread Production

Including Many Regions

Non-Standard Methods

- Widespread Production Mixture Evaluation
 - Production Mixes
 - Many Regions
 - Non-Standardization of methods
- Ruggedness Testing Testing Matrix
- New Equipment

2018 Testing

Gilson Press

		0%	RAP			10 %	RAP	
5.5%	IDT 1	IDT 2	IDT 3	IDT 4	IDT 1	IDT 2	IDT 3	IDT 4
5.5%	SCB1	SCB2	SCB3	SCB4	SCB1	SCB2	SCB3	SCB4
C 09/	IDT 1	IDT 2	IDT 3	IDT 4	IDT 1	IDT 2	IDT 3	IDT 4
6.0%	SCB1	SCB2	SCB3	SCB4	SCB1	SCB2	SCB3	SCB4
C 50/	IDT 1	IDT 2	IDT 3	IDT 4	IDT 1	IDT 2	IDT 3	IDT 4
6.5%	SCB1	SCB2	SCB3	SCB4	SCB1	SCB2	SCB3	SCB4
	IDT 1	IDT 2	IDT 3	IDT 4	IDT 1	IDT 2	IDT 3	IDT 4
7.0%	SCB1	SCB2	SCB3	SCB4	SCB1	SCB2	SCB3	SCB4
		20%	RAP			30%	RAP	
5 50/	IDT 1	IDT 2	IDT 3	IDT 4	IDT 1	IDT 2	IDT 3	IDT 4
5.5%	SCB1	SCB2	SCB3	SCB4	SCB1	SCB2	SCB3	SCB4
c	IDT 1	IDT 2	IDT 3	IDT 4	IDT 1	IDT 2	IDT 3	IDT 4
6.0%	SCB1	SCB2	SCB3	SCB4	SCB1	SCB2	SCB3	SCB4
6.59/	IDT 1	IDT 2	IDT 3	IDT 4	IDT 1	IDT 2	IDT 3	IDT 4
6.5%	SCB1	SCB2	SCB3	SCB4	SCB1	SCB2	SCB3	SCP

Ruggedness Testing Matrix

Major Takeaways:

- 1. Targeted Production Testing
- 2. Difference between Lab and Production
- 3. Correlate to Accepted Performance Testing

Widespread Production

Including Many Regions

Non-Standard Methods

- Production Special Note
- Rutgers Research Project

Production Special Note

- Two Mixes (Different Regions and Producers)
- IDEAL Cracking Test, Semi-Circular Bending
- High-Temp IDT, APA or Hamburg Test
- Comparison Testing
- Rutgers Research Project

- Production Special Note
- Rutgers Research Project
 - 11 Mixes (Covering eight Regions)
 - APA, Hamburg, High-Temp IDT
 - Overlay Tester, SCB, IDEAL-CT
 - NY Balanced Mix

- More Mixture Diversity

- Statewide Criteria

• Performance Note 1.1

- Major Components:
 - Enhanced Mixture Approval
 - Modified Quality Control Process

070

2020

Enhanced Mixture Approval

Mixture Verification

- Producer Made Samples
 - Producer-Tested Samples
 - Regional Lab Tested Samples
- Regional Lab Made Samples
 - Regional Lab Tested Samples

Test Methods	Criteria	Design Value
AASHTO TP124-18 Flexibility Index Test	Flexibility Index	6
ASTM D6931-17 Indirect Tensile Strength Test	IDT Strength	30 psi
ASTM D8225-19 Determination of CT Index	CT Index	100

Modified Quality Control Process

Plant Test Property	Test Method	Contractor Testing Frequency ¹	Department Testing Frequency ²
Aggregate Gradation	AASHTO T27	One per Sublot	One per Day (enough material for two tests)
Aggregate Moisture	AASHTO T255	One per Lot	Monitor and Verify
Mix Temperature	-	Two per Sublot	-
Air Voids	MM 5.16 <i>,</i> AASHTO T269	One per 3 Lots	One per 3 Days
Indirect Tensile Strength	ASTM D6931-17	One per 3 Lots	One per 3 Days
Semi-Circular Bending	AASHTO TP124-18	One per 3 Lots	One per 3 Days
Determination of CT Index	ASTM D8225-19	One per 3 Lots	One per 3 Days

All Data Recorded on Control Charts*

• Performance Note 1.1

- Major Components:
 - Enhanced Mixture Approval
 - Performance Component
 - Modified Quality Control Process
 - Simplified/Flexible
 - Reduced Plant Presence
 - Control Charts

Performance Note 1.1

• Performance Note 1.1

• Performance Note 1.1

• Performance Note 1.1

- Major Components:
 - Enhanced Mixture Approval
 - Performance Component
 - Modified Quality Control Process
 - Simplified/Flexible
 - Reduced Plant Presence
 - Control Charts

Major Takeaways:

- 1. Improving and Evolving Criteria
- 2. Consistency in sample fabrication
- 3. Solidifying Aging Protocols

NYS Mixture Performance – Production Note

- Gradation is the controlling Test Property for this project
- Gradation Limits
 - Production
 - Action
 - Evaluation

Limits	Sieve Sizes			
(Test Value – JMF Value)	#50 and Larger (300 μm and Larger)	#100 (150 μm)	#200 (75 μm)	
Production	0.0 - 5.0	0.0 - 4.0	0.0 - 2.0	
Action	5.0 - 8.0	4.0 - 6.0	2.0 - 4.0	
Evaluation	>8.0	>6.0	>4.0	

• Performance Note 1.2

- Major Components:
 - No major changes
 - Expanded roll-out
 - Tweaks with process

Major Takeaways:

- 1. Need Experience, both years and projects
- 2. Good collaboration with involved parties

• Performance Note 1.2

- Major Components:
 - No major changes
 - Expanded roll-out
 - Tweaks with process

Major Takeaways:

- 1. Need Experience, both years and projects
- 2. Good collaboration with involved parties

Enhanced Mixture Approval

Mixture Verification

- Producer Made Samples
 - Producer-Tested Samples
 - Regional Lab Tested Samples
- Regional Lab Made Samples
 - Regional Lab Tested Samples
 - Producer Lab-Tested Samples

Major Changes:

- 1. Consistent Aging Producer to Region
- 2. More rigorous criteria

Test Methods	Criteria	Design Value	COV
AASHTO TP124-18 Flexibility Index Test	Flexibility Index	8	≤40
ASTM D6931-17 Indirect Tensile Strength Test	IDT Strength	30 psi	≤40
ASTM D8225-19 Determination of CT Index	CT Index	<mark>135</mark>	≤40

Comments or Questions?

Michael Heim New York State DOT Michael.Heim@dot.ny.gov (518)-485-5276