

NEW YORK CONTRACTOR'S EXPERIENCE WITH PERFORMANCE TESTING

2021 NORTH EAST ASPHALT USER PRODUCER GROUP

VIRTUAL MEETING

HISTORY OF MIX DESIGN

Barber Asphalt Paving Company

• Asphalt cement 12 to 15% / Sand 70 to 83% / Pulverized carbonite of lime 5 to 15%

Clifford Richardson, New York Testing Company

- Surface sand mix: 100% passing No. 10, 15% passing No. 200, 9 to 14% asphalt
- •Asphaltic concrete for lower layers, VMA terminology used, 2.2% more VMA than current day mixes or ~0.9% higher binder 905 content

• Hubbard Field Method (Charles Hubbard and Frederick Field) •Sand asphalt design

920s •30 blow, 6" diameter with compression test (performance) asphaltic concrete design (Modified HF Method) Stability

• Francis Hveem (Caltrans)

- Surface area factors used to determine binder content; Hveem stabilometer and cohesionmeter used
- Air voids not used initially, mixes generally drier relative to others, fatigue cracking an issue **Stability + Durability**

• Bruce Marshall, Mississippi Highway Department

943

1993

927

890

• Refined Hubbard Field method, standard compaction energy with drop hammer •Initially, only used air voids and VFA, VMA added in 1962; stability and flow utilized

Stability + Durability

- Superpave
- Level 1 (volumetric)
- Level 2 and 3 (performance based, but never implemented)

В

Performance Based Specification

Introduction

The Northeast Asphalt User Producer Group's (NEAUPG) Asphalt Mix Committee is looking closely as a region at Performance Based Specifications (PBS). The Committee would like to provide state agencies in the Northeast with information on laboratory tests which will closely predict asphalt pavement performance in the field over a typical design life. We expect that this process will require multiple tests based on differing criteria and performance characteristics. The eventual objective is to allow states the opportunity to maintain specifications that meet their needs while allowing producers/contractors the means to deviate from those specifications if the require tests are run and criteria are met on mixes in the laboratory

We are reaching out to research centers, State Materials Engineers, and stake laboratory tests that may be used to predict in place performance and if ther effect. This includes the actual test, test protocols, and possible standards.

We appreciate your participation in this Survey. All results will be kept confi report. You will be sent a full copy of Survey results when finalized.

Thank you for your time in this matter.

Respectfully yours,

NEAUPG Mix Committee

Co-chairs: Edmund Naras – Pavement Management Engineer, MassDOT Bruce Barkevich – Vice President, New York Construction Mate **Optimized Mix Design for Performance**

NORTHEAST ASPHALT USER PRODUCER GROUP (NEAUPG)

ANNUAL MEETING BURLINGTON, VERMONT OCTOBER 2015

SHANE BUCHANAN OLDCASTLE MATERIALS

Development of a Semicircular Bend (SCB) Test Method for Performance Testing of Nebraska Asphalt Mixtures

Gabriel Nsengiyumva

Graduate Research Assistant Department of Civil Engineering University of Nebraska-Lincoln

Yong-Rak Kim, Ph.D. Associate Professor **Department of Civil Engineering** University of Nebraska-Lincoln

Taesun You, Ph.D. Postdoctoral Research Associate **Department of Civil Engineering** University of Nebraska-Lincoln

2015

Nebraska Transportation Center 262 WHIT 2200 Vine Street Lincoln, NE 68583-0851 (402) 47 2-197 5

This report was funded in part through grant(s) from the Federal Hi The views and opinions of the authors [or agency] expressed h

Technology Program is an integrated, national effort to improve the long-term performance and cost effectiveness of asphalt pavements. Manag Federal Highway Ar through partnerships with state

academia the program's primary goals are to reduce congestion, improve safety, and foster technology innovation

The program was established to naterials selection, mixture design, testing, construction

2 IS Rund THE LC TRAPH MUD. Faderal Highway Administration

and quality control.

Office of Asset Management. Pavements, and Construction FHWA-HIF-14-015 September 2014

TechBrief

Introduction

At the conclusion of the Strategic Highway Research Program (SHRP) over 20 years ago, it was envisioned that the new asphalt mix design system would have three levels based on the design traffic for the pavement. Level I was envisioned to be for low traffic pavements and the mix design requirements would be primarily based on traditional volumetric properties. Level II would be used for the majority of projects that carry moderate traffic levels and would include volumetric requirements plus a limited set of mixture performance tests. Level III would be for high traffic pavements also start with a volumetric based mix design followed by an expanded set of advanced performance tests. However, the "performance tests" were never implemented, except for a few special projects, primarily because

The Need for Asphalt Mixture Cracking

Tests and the Steps Toward

Implementation

This Technical Brief covers the motivations for pursuing

asphalt mixture cracking tests, provides an overview of

necessary steps toward implementation, and identifies

the different cracking test methods, describes the

gaps where further research is needed.

the tests were not considered practical for routine use for the thousands of mix designs used each year in the United States.

Early in the implementation of Superpave mix design, more focus was given to addressing rutting. Mix designs for moderate and high traffic pavements were designed to improve rutting resistance by following more restrictive aggregate requirements and the binder grade bumping guidelines. Many states also added rutting test requirements to mix designs for moderate and high traffic projects. As the early projects built under the Superpave system have matured, most highway agencies have recognized that rutting problems have been virtually eliminated.

NCHRP **REPORT 704**

NATIONAL

HIGHWAY

RESEARCH

PROGRAM

COOPERATIVE

TRAN

A Performance-Related Specification for Hot-Mixed Asphalt

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

December 28, 2015

CIRCULAR LETTER 2015-19

ILLINOIS FLEXIBILITY INDEX TEST - PILOT PROJECTS

COUNTY ENGINEERS / SUPERINTENDENTS OF HIGHWAYS MUNICIPAL ENGINEERS / DIRECTORS OF PUBLIC WORKS / MAYORS METROPOLITAN PLANNING ORGANIZATIONS - DIRECTORS TOWNSHIP HIGHWAY COMMISSIONERS CONSULTING ENGINEERS

The department has been developing a new hot-mix asphalt (HMA) performance test for durability through research at the Illinois Center for Transportation. This new performance test is known as the Illinois Flexibility Index Test (I-FIT). The objective of the I-FIT test is to ensure HMA mixtures have the necessary flexibility to resist premature cracking.

The department is preparing to implement the newly developed test on a pool of pilot projects during the 2016 construction season. The department is asking for local public agency volunteers interested in participating with the pilot program. The department will evaluate these pilot projects through our experimental feature process.

The Illinois Flexibility Index Test is performed on pucks prepared from either gyratory compacted HMA or six-inch cores taken from in-place pavement.

Testing and Analysis of LWT and SCB **Properties of Asphaltic Concrete Mixtures**

Samuel Cooper III

Louisiana Transportation Conference February 18 - 20, 2013 Baton Rouge, Louisiana

A.	Mix	Virgin	10% RAP "S"	15% RAP "S"	20% RAP "S"	20% RAP "V"
	19.0mm		-	÷	6.0	4.1
	12.5mm		-	4.6	6.0	-
	9.5mm	3.1	1.2	-	3.5	2.5

3348 Route 208, Campbell Hall, NY 10916 Phone: 845-496-1600 Fax: 845-496-1398 42 Day Farm Road, West Stockbridge, MA 01266 Phone/Fax: 413-232-8566

Hamburg Wheel-Track Testing of Compacted HMA Test Method AASHTO T 324

Client:	Barree Stone Products	Project	QC- Hamburg Testing Albion, NY
Material:	12.5 mm < 0.3m, 20% RAP	Project Number:	160954
Source:	Barrie	Lab Number:	16-1488
Date Sampled:	11/1/2018	Sampled By:	Client
Date Tested:	11/14/2016	Tested By:	John Brinsfield

	4	8	C	D	E	F G	8	1	4	0	4	M	R	D		9		5	T	Ų	¥	W	-
ī	Directions:	Fill in gellow a	ells and use the	solver on blu	e cells												_	-					
ź	Project	Barre Stone Produc	ts. 12.5mm c 03. PG6	45-22, 20% RAP																			
ŝ	Sample D	072816-316-12-2	L																				
4	Target AV/%	55										_			-		_						
5	Air Voids	2.35																					
5	Dimensional	Netch (15mm)	Thickness (SOmm)	Ligament Length										Y4.01	UNISIN/244	19057AU800v	1.1.1.111	02134910	100000 ⁴ 2.5183425	28215080000004 + LL 415	10100470790	1, 100000	
ī	Measurement 1	15.83	52.04	56.1								-				1.34037688	601E50000	11 + 5000	40034566254 5108000	004 + 5 402278161091000	00000		
8	Measurement 2	15.71	52.29	55.91											1			194	9181111195-40006808	800			
2	Measurement 3		52.1												1								
0	Average	15.77	52.14333333	56.005											1								
1							and the second																
2		_	Raw Data	_		-	Processed	Data															
3	X-exis (# of Lines)	Y-Axis (# of Lines)	Conversion to lbs	Conversion to kn	Conversion to mm	Stroke (mm)	Load (kN)	P	P			-				1							
5	0	0	0	0	0	0	0	13.4002	-42,681	0.07061		1				1				_			
8	1	10	250	11120354	0.127	0.127	1 1120554	8.5092	-34.524	0.21185							1						
1	2	20	500	2.2241108	0.254	0.254	2.1241108	4.58669	-27.415	0.54955		I	-				N						
8	5	29.5	737.5	3.28056343	0.381	0.381	3.28056343	1.9051	-21.268	0.46959								-	Langener.	Bitternet			
9	4	37	925	4,11450498	0.508	0,508	411460498	-0.8525	-16	0.56492		0	1						1.000	mana			
0	3	43	1075	4.78183822	0.635	0.635	4,78185822	-2.5929	-11.555	0.63907			0	1		2		5		á 3			
1	5	47.5	1187.5	5.28226315	0.782	0.762	5 28226315	-3.8131	-7.7959	0.6885							_			La constante da			
1	1	50	1250	5.560277	0.889	0.889	5.560177	-4.6008	-47118	0.70969						-			Raw Coefficients	Integral Coefficients			
3	1	50.5	1262.5	5,61387977	1.016	1.016	3.81387977	+5.0547	-2.2142	0.70262				Start	Finish	Infection	Max Lord	. 6	-0.018050424	-0.002578632	W	F(Joules)	9.420
4		49	1225	5,44907145	1.143	1.143	5.44907145	-5,1853	-0.2582	0.66579		L.	oed	5.402278161	6.2275	5,48359	5.61588	5	0.567590215	0.061231702			
5	10	43	1125	5.0042493	1.27	1.27	5.0042495	-5.1147	1.27777	0.60023		0	Nap	0	1015	1.16075	1,018		-2.953542928	-0.586708586			
0	11	40	1000	4.4482216	1.597	1.397	4,4482216	-4.8777	2.39192	0.51902									11.4296916	2.857422901			
17	12	33.5	837.5	3.72538559	1.524	1.524	5.72558559	-4.5218	3.15905	0.43429								2	-21.34037467	-7.113458222			
8	13	28	700	3.11375512	1.651	1.651	3.11373512	-4.0878	3.63059	0.36014								1	13.4001656	6.700082801			
9	14	23	575	2.55772742	1.778	1.778	2 55772742	-3.6101	3.85459	0.19659								0	5.402278161	5.402278161			
0	15	19	475	2 11290526	1.905	1.905	2.11290526	-5.1175	3.87571	024715									and the second second				
1	16	16	400	1.77928864	2,032	2.052	1,77928864	-2.6525	3.75525	0.21185			100	Area(ile)	0.00292			Note	Adjust the trend ine	to go from the peak loa	d to final load	and paste	the com
1	17	14	350	1.55687756	2.159	2.159	1.55687756	+2.1738	3.47106	0.1836				Gf (louies/m2)	3225.75								
3	13	12	300	1.33446648	2.286	2.286	1.33446648	-1.7547	3,11771	0.13535				Secont Stillness	5.52744						TITGE	under .	
4	19	10	250	1.1120554	2.413	7.413	1.1120554	-1.5844	2.70655	0.15417				Flexibility Index	6.21847					THEFT	1766	SY	
5	20	9	225	1.00084986	1.54	2.54	1.00084986	-1.0685	2.26468	0.12005				alerna in						136		812	S FE
8	23	8	200	0.88964452	2.667	2.667	0.88964452	-0.8094	1.81713	0.10592				-5.187566426	3225.75	5.21847				ĨĨ		E	2
17	12	7	175	0,77843878	2,794	2.794	0.77843878	-0.6063	1.38469	0.09392										C.N.			A7
8	23	63	157.5	0.700594902	2.921	2.921	0.700594902	-0.4563	0,98497	0.08544										HE A		A	
9	24	5.8	145	0,544992132	3,048	3.048	0.644992152	-0.3542	0.6522	0.07658											· occipi		m
0	23	5.5	132.5	0.589389362	3.175	3.175	0.589389362	-0.2933	0.35725	0.07132										A A A A A A A A A A A A A A A A A A A	RSITE	THURSDAY	
i	34	2.8	.120	0.483756503	8 503	8 8/12	0.555786502	-0.1657	0.10758	19130.0													

W

2019 SPECIAL NOTE ASPHALT MIXTURE PERFORMANCE TESTING

NYSDOT & INDUSTRY V1.00

SPECIAL NOTE ASPHALT MIXTURE PERFORMANCE TESTING

This Special Note requires the asphalt producer to collect asphalt mixture during the production for this project. The Producer will perform the following tasks and the cost of producing, shipping, and testing these specimens at an AMRL approved laboratory capable of performing these tests and at the Producer laboratory will be included in the bid price of the asphalt mixture. The Producer and RME will agree on the production day to implement the requirements of this note.

Task 1. Collection of Asphalt Mixture.

The Producer shall collect mixture for testing as follows on a two sublot day production:

Sublot 1 – Testing Lab and Producer Lab

Sublot 2 - Producer Lab only

- a) The producer shall supply sufficient mixture to the AMRL approved laboratory so that the required specimens can be fabricated and tested as listed in Task 2.
- b) The Producer shall collect sufficient mixture to fabricate specimens in their lab and tested as listed in Task 3.

The mixture shall be collected after the first 300 tons. If the production is such that it yields only one sublot, then it will be divided into two sublot for the day.

Task 2. Number of Specimens (Testing Lab).

The testing laboratory will make the following number of specimens for performance testing:

- a. Overlay Tester 5 specimens
- b. Asphalt Pavement Analyzer (APA) or Hamburg Wheel Tracker 6 specimens
- c. Semi-circular Bend (SCB) 4 specimens
- d. Ideal-CT 3 specimens
- e. High Temperature Indirect Tension 3 specimens
- f. Gradation
- g. Asphalt content using chemical extraction.

Task 3. Number of Specimens (Producer Lab).

The producer will make the following number of specimens for performance testing:

- a. Semi-circular Bend (SCB) 4 specimens
- b. Ideal-CT 3 specimens
- c. High Temperature Indirect Tension 3 specimens

Task 4.

<u>Test Results.</u> The Producer will submit both the testing lab and Produce lab results to the Materials Bureau once the tests are completed. In addition, the Producer shall submit the volumetric results of the mixture during the production for the day selected. The QAF will be a 1.0.

Page 1 of 1

Date when the Quick <u>NOTE</u> : 1. The user and the include all the needer form is sent to the C than the one used to to reflect the Price A actually performed.	Quote form is sent Contractor understa of Price Adjustments ontractor). If the pr calculate this Quick djustments for the M	to the Contractor: April and that the Project's Total Cost t for the month indicated (the mon oject (or part of the project) is exe Quote, then the Project's Total C Ionth in which the project (or par	/ <u>3</u> / 20 <u>19</u> o be shown below will oth when the Quick Quote ecuted in a different month cost will change accordingly rt of the project) was
NOTE: 1. The user and the include all the needed form is sent to the C than the one used to to reflect the Price A actually performed.	Contractor understa of Price Adjustments ontractor). If the pr calculate this Quick adjustments for the M	nd that the Project's Total Cost t for the month indicated (the mon oject (or part of the project) is exe Quote, then the Project's Total C Ionth in which the project (or par	o be shown below will oth when the Quick Quote ecuted in a different month cost will change accordingly rt of the project) was
2. The Contractor u <u>Adjustment) exceed</u> Contractor any time	nderstands that <u>at n</u> <u>the contract price</u> . during the quick qu	o time may a quick quote unit pri Materials cost, hauling expenses, ote process.	ice (without the Price etc., can be lowered by the
Agency/User:	NYSDOT Monro	be County West Residency	
Project Name:	NY 19 FOB Pav	ng	Project # 401982
	NV 10 from NV	104 to NY 18	
Project Location:	INT IS HOM INT		AND STORE STORES
Project Location: County:	Monroe	City: T/o Clarkson/Hamlin	Zip Code: 14420

LS

BR 257

Producer		1111 - C
BAR	Plant ID	INC. Region
Barre 6 Ton Batch	H0306	4

Туре	PG Binder	Additive	Coding	Site Manager #
HMA	PG 64S-22		9F32HB	H030618154
HMA	PG 64V-22		9F32HC	4030618154
WMA	PG 64S-22	EVO	9F32WB	14030618155
WMA	PG 64V-22	EVO	9F32WC	HO306 18 155
				-
	Type HMA HMA WMA WMA	Type PG Binder HMA PG 64S-22 HMA PG 64V-22 WMA PG 64S-22 WMA PG 64S-22	TypePG BinderAdditiveHMAPG 64S-22HMAPG 64V-22WMAPG 64S-22EVOWMAPG 64V-22EVOWMAPG 64V-22EVO	TypePG BinderAdditiveCodingHMAPG 64S-229F32HBHMAPG 64V-229F32HCWMAPG 64S-22EVO9F32WBWMAPG 64V-22EVO9F32WCWMAPG 64V-22EVO9F32WC

A mark		Source	DI 3.0/	Dland	Blend Lim	its to Maint	ain C.A.P.'s
Aggi	regates	Number	Blend %	Blend	C.A.A.	F.A.A.	Flat/Elong
	No. 3A Stone					115 5 1	
	No.2 Stone						
	No. 1 Stone			1 Fric. Blend			0
Coarse	No. 1 Stone NC Stone				*	1. 1. 1. 1.	
	No. 1A Stone	4-18R	47	IA Fric.Blend	49	10000	0
	No. 1A Stone NC Stone			100/0		Burger	17.10
	No. 1B Stone	4-18R		Fines Blend	all's all	50.2	C. Markey
Fine	Man. Sand		33	2/1	Mr. n. H		1 th to de-
A LINE	Natural Sand	4-49F		2/1	7	38.4	and the second
	Mineral Filler				and the state	ALM CAR	
	RAP	Barre	20		52	46.0	1.0

Sie	ve Size	0.075mm	0.150mm	0.300mm	0.600mm	1.18mm	2.36mm	4.75mm	9.5mm	12.5mm	19.0mm	25.0mm	37.5mm	50.0mm	% Binder
	General Limits	2 - 10					32-67	≤90	90 - 100	97 -100	100		Design the second second		5.8 Min.
% Passing	JMF Range	0-7	0-9	4 - 14	11-21	17 - 27	29-39	63 - 73	95 - 100	95 - 100	100	Same Ad			YAM
-	Target Value	2	4	9	16	22	34	68	100	100	100	The second			6.2
					N 1	10								Virgin AC	4.9
	Pre	epared By :		AN Greg	Rose ,*	AC	Date :	Aug-	-2018		Revisions	% Binder			
			11	1111	11						09/18	6.3			
ccepted for '	Verification/Proc	luction By:	J.	1 Ral	All	-	Date:	08/1	7/2018		/				

Mix Gmm:	2.510	
Sample Height (mm):	62	62mm for Ideal-CT
Target Air Voids (%):	7.0	7.0% for Ideal-CT
Trial Weights* :	2500 1.023]
Rounded Weights:	2500	Ideal-CT Sample Weight
Sample Height (mm):	95	95mm for HT-IDT
Target Air Voids (%):	7.0	7.0% for HT-IDT
Trial Weights* :	3842 1.02	
Rounded Weights:	3840	HT-IDT Sample Weight
Sample Height (mm):	160	160mm for SCB
Target Air Voids (%):	8.5	8.5% for SCB
Trial Weights* :	6429 1.01	1
Rounded Weights:	6430	SCB Sample Weight
Input		
Correction Factor		

NN/

Plant Production	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Voids	%	3.16	2.5 - 4.5	4.53	-	3.69
VMA	%	16.4	> 15.0	16.73	-	16.03
VFB	%	76.5	65.0 - 80.0	72.92	-	76.99
AC Content	%	6.3	6.1 - 6.5	6.5	6.3	6.3
Plant Gradation	Units	Target	Range	Lot 4A	Rutgers *	Lot 4B
1/2"	%	100	100	100	100	100
3/8"	%	100	95 - 100	99.7	98.5	99.7
#4	%	68	63 - 73	69.9	72.7	70.9
#8	%	34	29 - 39	31.3	35.3	33.6
#16	%	22	17 - 27	19.6	22.3	21.5
#30	%	16	11 - 21	13.1	15.7	14.5
#50	%	9	4 - 14	7.8	10.9	8.3
#100	%	4	0 - 9	4.3	7.7	4.2
#200	%	2	0 - 7	2.4	5.7	2.1

APA, HAMBURG & OVERLAY

APA Rutting @ 8,000 Cycles @ 64°C	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Rut Depth	mm		4 - 7	-	4.38	-
Hamburg Rutting at 20,000 Cycles @ 50°C	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Rut Depth	mm	< 12.5	n/a	-	10.45	-
Overlay Test for Crack Resistance @ 25°C	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
# of Cycles to Failure	Cycles		100 - 700	-	1171	-

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

long-term pavement performance (LTPP) database intermedi-

ate temperatures. The test method describes the determination

of the cracking tolerance index, CT_{Index}, and other parameters

determined from the load-displacement curve. These param-

eters can be used to evaluate the resistance of asphalt mixtures

Standard Test Method for **Determination of Cracking Tolerance Index of Asphalt** Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature¹

This standard is issued under the fixed designation D8225; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

to cracking.

2. Referenced Documents

2.1 ASTM Standards:² 1.1 This test method covers the procedures for preparing,

D8 Terminology Relating to Materials for Roads and Pavetesting, and measuring asphalt mixture cracking resistance using cylindrical laboratory-prepared asphalt mix samples or ments pavement cores. Testing temperatures are selected from the

D3203/D3203M Test Method for Percent Air Voids in Compacted Asphalt Mixtures

D3666 Specification for Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials D6373 Specification for Performance Graded Asphalt Binder

D6925 Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means

Standard Method of Test for

Determining the Fracture Potential of Asphalt Mixtures Using the Flexibility Index Test (FIT)

AASHTO Designation: TP 124-18¹

Technical Section: 2d, Bituminous Materials

Release: Group 3 (August)

CEDC		
GERS ter for Advanced Infrastructure Transportation	s Asphalt Analysis To	ol Pack
Intermediate Temp SCB	HT-IDT	Cold Temp SCB
Ideal-CT	DCT	APA

	ASTM D6931 - 1	7				
Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures						
 Project Name:	NYSDOT R4 - AMP Testing	Institution:	Barre Stone			
Project Name: Mix Type:	NYSDOT R4 - AMP Testing 9.5 F3, PG64S-22, 20% RAP	Institution: Date Tested:	Barre Stone 05/30/19			

Specimen ID	L4A A	L4A C	L4A K	Average	Standard Deviation	COV (%)
Air Voids (%)	7.0	7.0	7.1	7.0	0.0	0.7
Thickness (mm)	94.7	94.7	95.0	94.8	0.1	0.1
Diameter (mm)	150.0	150.0	150.0	150.0	0.0	0.0
Peak Load (N)	4884	5258	6472	5538	677.9	12.2
IDT Stregth (kPa)	219	236	289	248.0	30.0	12.1
IDT Strength (psi)	31.8	34.2	42.0	36.0	4.4	12.1

HIGH TEMPERATURE IDT

High Temperature Indirect Tensile Strength (HT-IDT) @ 42°C	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Voids	%	7.0	6.5 - 7.5	7.0	7.0	6.9
Thickness	mm	95.0	94.0 - 96.0	94.8	95.5	95.0
Diameter	mm	150.0		150.0	149.9	150.0
Peak Load	Ν			5538.0	5146.7	5563.2
HT-IDT	kPa		158 - 324	248.0	228.9	248.7
HT-IDT	PSI		23 - 47	36.0	33.2	36.1
High Temperature Indirect Tensile Strength (HT-IDT) @ 44°C	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Voids						
	%	7.0	6.5 - 7.5	-	7.3	-
Thickness	% mm	7.0 95.0	6.5 - 7.5 94.0 - 96.0	-	7.3 95.1	-
Thickness Diameter	mm mm	7.0 95.0 150.0	6.5 - 7.5 94.0 - 96.0	- - -	7.3 95.1 150.0	- - -
Thickness Diameter Peak Load	% mm mm N	7.0 95.0 150.0	6.5 - 7.5 94.0 - 96.0	- - - -	7.3 95.1 150.0 5320.0	- - - -
Thickness Diameter Peak Load HT-IDT	% mm mm N kPa	7.0 95.0 150.0	6.5 - 7.5 94.0 - 96.0 158 - 324	- - - - -	7.3 95.1 150.0 5320.0 237.2	- - - - -

Specimen Information					
ID	1				
Thickness (mm)	61.9				
Diameter (mm)	150				

Analysis Results		
P100 (kN)	21.093	
L100 (mm)	3.607	
P85 (kN)	17.788	
P65 (kN)	13.598	
L85 (mm)	4.745	
L65 (mm)	5.410	
L75 (mm)	5.077	
m75	6.297	
Work of Fracture (kN.mm)	104.987	
Fracture Energy (kN/mm)	0.011	
СТ	60.69	

	Raw Data			Data A	nalysis	
Load	Displacement (in)	Time	Load	Post-Peak Load	Displacement	Work Increment
(lbf)	Displacement (m.)	(sec)	(kN)	(kN)	(mm)	(kN.mm)
	13 0	0.000	0.058	0.000	0.000	0.000
	13 0	0.133	0.058	0.000	0.000	0.000
	13 0	0.266	0.058	0.000	0.000	0.000
	13 0	0.399	0.058	0.000	0.000	0.000
	13 0	0.532	0.058	0.000	0.000	0.000
	48 0.0011	0.665	0.214	0.000	0.028	0.004
	64 0.0015	0.798	0.285	0.000	0.038	0.003
	187 0.005	0.931	0.832	0.000	0.127	0.050
	348 0.0076	1.064	1.548	0.000	0.193	0.079
	542 0.0109	1.197	2.411	0.000	0.277	0.166
	767 0.014	1.330	3.412	0.000	0.356	0.229
1	033 0.0179	1.463	4.595	0.000	0.455	0.397
1	321 0.0222	1.596	5.876	0.000	0.564	0.572
1	612 0.0263	1.729	7.171	0.000	0.668	0.679
1	898 0.0309	1.862	8.443	0.000	0.785	0.912
2	176 0.0358	1.995	9.679	0.000	0.909	1.128
2	435 0.0408	2.178	10.831	0.000	1 036	1 302

Proposed Ideal-CT	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Voids	%	7.0	6.5 - 7.5	7.1	7.0	7.0
Thickness	mm	62.0	61.0 - 63.0	62.1	62.2	62.0
Diameter	mm	150.0	148.0 - 152.0	150.0	150.0	150.0
Peak Load	kN			13.2	10.2	12.6
Displacement (L)	mm			6.2	6.5	6.3
Tensile Strength	kPa			901.7	697.5	858.9
Fracture Energy (Gf)	J/m ²			9,825.1	8,066.7	9,413.7
Slope (S)	kN/mm			2.32	1.65	2.25
Gf/S				4,235.4	4,999.7	4,225.4
(Gf/S)*(L/D)			70 - 250	176.0	217.5	178.8

AASHTO TP 124

Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using Semicircular Bend Geometry (SCB) at Intermediate Temperature

Mix Type: 9.5 F3 6 Test Temperature: 25C	Mix Type: 9.5 F3 64S-22 20% RAP est Temperature: 25C					Date Tested: 05/30/19 Technician: Greg Rose			
Specimen ID	L4A1	L4A7	L4A8	L4A10	Average	Standard Deviation	COV (%)		
Air Voids (%)	6.6	7.2	7.4	7.1	7.1	0.3	4.8		
Thickness (mm)	48.40	49.10	48.00	49.00	48.6	0.5	1.1		
Ligament Length (mm)	58.50	55.90	58.10	57.90	57.6	1.2	2.0		
Max Load (kN)	4.12	3.63	3.90	3.34	3.7	0.3	9.0		
Fracture Energy, Gr (J/m ²)	2413.5	2462.4	2632.7	2799.2	2576.9	175.4	6.8		
Slope (kN/mm)	-4.74	-2.53	-3.67	-2.41	-3.34	1.09	32.8		
Elevibility Index (El)	5.09	9.73	7.17	11.60	8.4	2.9	34.0		

8

Minimum Flexibility Index (FI) Criteria

This report was developed using the Rutgers Asphalt Analysis Tool-Pack (RAAT-Pack)

SEMICIRCULAR BEND (SCB)

Semicircular Bend (SCB)	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Voids	%	7.0	6.0 - 8.0	7.1	7.1	7.0
Thickness	mm	50.0	49.0 - 51.0	48.6	49.9	48.8
Ligament	mm			57.6	58.1	57.9
Max Load	kN			3.75	3.30	3.28
Fracture Energy	J/m²			2604.3	3200.8	2513.2
Slope	kN/mm			-3.28	-1.72	-2.31
Flexibility Index	FI	> 8.0		8.6	18.8	11.4

SPECIAL NOTE ITERATIONS

		v 2.00 (2020)		v 3.00 (2021)		v 4.00 (2022)	
Test Method	Criteria	Min. Design Value	Max. COV	Min. Design Value	Max. COV	Min. Design Value	Max. COV
Flexibility Index	Flexibility Index	6	≤ 20	6	≤ 40	8	≤ 40
Indirect Tensile Strength Test	IDT Strength	100 psi	≤ 20	30 psi	≤ 40	30 psi	≤ 40
Determination of CT Index	CT Index	-	-	100	≤ 40	135	≤ 40

D264122

<u>SPECIAL NOTE</u> D264122 – P.I.N. 9358.39

HMA MIXTURE EVALUATION USING PERFORMANCE TESTING

Description:

This note covers the requirements for asphalt mixture verification and production under a performance testing process. Plant Quality Adjustment Factors do not apply for mixture produced under this note. Department mixture Quality Assurance will consist of paver sampling and review of Contractor control charts.

All provisions of Sections 401 Asphalt Production and 402 Hot Mix Asphalt (HMA) Pavements of the NYS Standard Specifications apply except as modified below.

Mixture Design Process

HMA mixtures shall be designed to meet the requirements of New York State Materials Method 5.16. Additionally, the mixture shall be tested to meet the performance testing requirements specified in *Table 1 - Performance Testing*.

Table 1 - Performance Testing

Test Methods	Criteria	Design Criteria	COV
AASHTO TP 124-18 Flexibility Index Test	Flexibility Index	6	≤20
ASTM D6931-17 Indirect Tensile Strength Test	IDT Strength	100 psi	≤20
ASTM D8225-19 Determination of CT Index	CT Index	-	-

Quality Control Process

95A1

The Quality Assurance Technician (QAT) is not required at the HMA Plant. The QAT shall not be responsible for any activities at the Producer Lab.

The test properties described in *Table 2* shall be recorded by the Contractor on control chart templates, provided by the Department. These control charts should be used by the Contractor to identify any changes in the mixture production. These Control Charts will be filled out and submitted to the Regional Materials Engineer daily.

Table 2: Testing and Sampling Table

Plant Test Property	Test Method	Contractor Testing Frequency *All Sampling at Plant	Department Testing Frequency *All Sampling at Paver
Aggregate Gradation	AASHTO T27	One per Sublot	One per Day (Enough material for two tests will be collected)
Aggregate Moisture	AASHTO T 255	One per Lot	Monitor and Verify
Mix Temperature	N/A	Two per Sublot	
Air Voids	MM 5.16, AASHTO T269	One per 3 Lots	One per 3 Days
Indirect Tensile Strength	ASTM D6931-17	One per 3 Lots	One per 3 Days
Semi-Circular Bending	AASHTO TP 124- 18	One per 3 Lots	One per 3 Days
Determination of CT Index	ASTM D8225-19	One per 3 Lots	One per 3 Days

IDEAL RUT TEST

Development of IDEAL-RT : Concept

□ IDEAL-RT: TWO supports and shear

IDEAL Rutting Test

QUESTIONS?

Greg Rose

BARRE STONE PRODUCTS, INC./KEELER CONSTRUCTION COMPANY, INC.

585-943-7274

GREGR@BARRESTONE.COM

