New York State's Balanced Mixture Design (BMD) Research Efforts

Presented By:

Thomas Bennert, Ph.D. Center for Advanced Infrastructure and Transportation (CAIT) Rutgers University

Northeast Asphalt Users Producers Group (NEAUPG) October 28th 2020 (Somewhere from my house)

Acknowledgements

- Zoeb Zavery (Project Manager), NYSDOT
- Ed Wass Jr. and Drew Tulanowski (Mixture Design Verification and Test Specimen Prep)
- Ed Haas (Performance Testing)
- Chris Ericson and Nick Cytowicz (Asphalt Binder Work)
- Majority of work conducted during COVID guidelines at Rutgers University!
 - Over 800 design and volumetric specimens!
 - Over 1000 rutting specimens!
 - Over 1000 fatigue cracking specimens!

Research Goals

- Utilizing different performance tests, evaluate approved NYSDOT asphalt mixtures
 - Determine "limits" of asphalt content for different mixtures based on performance
 - Fatigue performance defining minimum AC%
 - Rutting performance defining maximum AC%
 - Determine "performance based" optimum asphalt content range and compare to volumetric-based asphalt content
 - Evaluate performance criteria for the IDT Test methods
 - Project is for SCOPING to see where NY mixes are

Methodology

- 1. Determine raw material properties
 - 1. Gradation, Gsb, RAP asphalt content and gradation
- Verify aggregate blends & optimum asphalt content using NYSDOT criteria adjust asphalt content slightly if needed
- 3. Produce specimens at -0.5, Opt, +0.5 and +1% optimum asphalt content
 - 1. Performance samples
 - 2. Nmax (back-calculated to determine Ndes & Nini)
- 4. Generate BMD curves to determine optimum range of asphalt content and compare to volumetric
- 5. Generate database of performance to help establish NYSDOT IDT criteria
 - 1. Fatigue Cracking: Overlay Tester & SCB FI
 - 2. Rutting: APA (Rutting at 8,000 cycles) & Hamburg (Rutting at 20,000 cycles)

Mixture Conditioning for Design and Performance Samples

Design

- Volumetric conditioning
 - Loose mix conditioning for 2 hours +/- 5 minutes at compaction temperature
- RAP (Multiple methods in literature how to handle in lab)
 - Heated to same temperature as aggregates (mixing temperature) for 2 hours
 - Added to aggregates in mixing bucket after a five seconds of aggregates mixing dry (before binder added)
 - Based on recommendations from AASHTO R₃₅ Appendix Section X2.7.2.2

Performance Specimens

- Rutting
 - Volumetric Conditioning Only
 - Loose mix conditioning for 2 hours +/- 5 minutes at compaction temperature
- Fatigue Cracking
 - Volumetric + 4 hours at 135°C (TTI work with MN)
 - Additional conditioning to provide a level of extra aging while still being feasible in a "laboratory workday"

NYSDOT HMA Mixture Verification

NYSDOT Materials Method 5.16 (2019) used as guidance

Design Criteria/Test Method	Acceptable Tolerance/Variation	
Air Voids, Va (%)	+/- 1.0%	
Voids in Mineral Aggregate, VMA (%),	$VMA_{Table 4} - (3.5 - V_{a(lab)}) \text{ when } 2.5 \le V_{a(lab)} \le 3.5$	
for Volumetric Mixes	$VMA_{Table 4} + (V_{a(lab)} - 3.5)$ when $3.5 < V_{a(lab)} \le 4.5$	
Theoretical Maximum Specific	+0.010	
Gravity, G _{mm} (g/cm ³)	± 0.019	
Bulk Specific Gravity of Compacted	+ 0.029	
HMA Specimen, G _{mb} (g/cm ³)	± 0.028	

Test Procedures Used in Research Study

RUTTING EVALUATION

FATIGUE CRACKING EVALUATION

Mixture Verification

Mixture Verification

- After gradations and gravities were determined for each aggregate and RAP source, mixes blended as per JMF
 - RAP had binder recovered for accurate AC%
 - RAP aggregate gravities conducted on recovered aggregates after ignition
 - Modifications were made to blend percentages if gradations off by +/- 4%
 - +/- 2% for No. 200
 - RAP content (by mix weight) always remained constant for JMF
- Optimum asphalt content verified using volumetrics
 - If not met, asphalt content modified to meet final volumetrics

Example of Volumetric Verification

- Volumetrics compared to original design as first step to verify mix
- Example shows good agreement between JMF volumetrics and those of reconstructed mix

Standard Method of Test for

Bulk Specific Gravity (*G_{mb}*) of Compacted Hot Mix Asphalt (HMA) Using Saturated Surface-Dry Specimens

Project ID: NYSDOT BMD

Date: 4/10/2020

AASHTO Designation: T 166-12

Technician: Drew

AASHTO Designation: T 269-11¹ ASTM Designation: D 3203-05

Open Asphalt Mixtures

Standard Method of Test for

Mix Type: 75 Gyr Design Verification, 9.5mm NMAS Supplier Mix #7 Gsb: 2.619 % Fines: 5.9

Percent Air Voids in Compacted Dense and

Core ID	AC %	Bulk Specific Gravity	Max. Specific	Air Voids (%)	VMA (%)	VFA (%)	#200/Pbe	%Gmm @ Ninitial	%Gmm @ Ndesign
JMF	6.1	2.350	2.435	3.5	16.20	78.4	0.89	85.8	
Spec		+/- 0.028	+/- 0.019	2.5 to 4.5	> 15.0	60 to 80	0.8 to 1.6	< 89.0	96.5
1	6.1	2.329	2.444	4.7	16.5	71.5	1.13	85.5	95.3
2	6.1	2.335	2.444	4.5	16.3	72.6	1.13	85.7	95.5
3	6.1	2.342	2.444	4.2	16.0	74.0	1.13	86.2	95.8
Average	6.1	2.335	2.444	4.4	16.3	72.7	1.13	85.8	95.6
Table 1 - V	erification	2.322	2.416		Minimum				
Require	ements	2.378	2.454		15.9				
								-	

Performance Testing

Performance Testing

- Final test specimens were compacted between 5.5 to 6.5% air voids to mirror typical field densities
 - Asphalt Content: -0.5, Opt, +0.5, and +1.0%
- Performance Specimens
 - Rutting
 - Asphalt Pavement Analyzer (AASHTO T340) @ 64C
 - Hamburg Wheel Tracking (AASHTO T₃₂₄) @ 50C
 - High Temperature IDT (NCHRP 9-33) @ 44C
 - Fatigue Cracking
 - SCB Flexibility Index (AASHTO TP124) @ 25C
 - IDEAL-CT Index (ASTM D8225) @ 25C
 - Overlay Tester (NJDOT B-10) @ 25C

Balanced Mix Design Work

- For graphical presentation, test methods were grouped to determine "balanced" conditions
 - APA and Overlay Tester
 - Hamburg and SCB Flexibility Index
 - HT-IDT and IDEAL-CT Index
- For each mix;
 - Minimum asphalt content = average of fatigue tests
 - Maximum asphalt content = average of rutting tests
 - BMD Range = Maximum Minimum

Final Performance Criteria for NYSDOT BMD

 Initial criteria determined based on previous NYSDOT research studies

Rut	ting	Fatigue Cracking		
ΑΡΑ	< 4.0 mm @ 8,000 cycles	Overlay Tester	> 250 cycles	
Hamburg	< 12.5 mm @ 20,000 cycles	SCB Flexibility Index	> 8.0	
IDT Strength	?	IDEAL-CT Index	?	

IDT Performance Criteria

- Minimal experience with IDT performance testing in NY
- Used existing "accepted" criteria for different test methods to calibrate IDT performance criteria
 - Fatigue: OT and SCB FI
 - Rutting: APA and Hamburg

NY Performance Database – Fatigue Cracking

- Total of 11 different mixtures provided 44 data sets for comparison of NYSDOT asphalt mixes
- Averaging regressions used to determine "equivalent" IDT parameters
 - Example:
 - SCB FI of 8.0 = IDEAL-CT of 134 Overlay Tester of 250 = IDEAL-CT of 144 Average = 138

Final Performance Criteria for NYSDOT BMD

Rut	ting	Fatigue Cracking		
APA	< 4.0 mm @ 8,000 cycles	Overlay Tester	> 250 cycles	
Hamburg	< 12.5 mm @ 20,000 cycles	SCB Flexibility Index	> 8.0	
IDT Strength	> 30 psi @ 44°C	IDEAL-CT Index	> 135	

Balanced Mix Design (BMD) Results

BMD Analysis – Mix #4 (PG64V-22, 10% RAP)

RAPL is accredited by AASHTO's AMRL Program

RAPL is accredited by AASHTO's AMRL Program

BMD Analysis – Mix #8 (PG64V-22, 15% RAP)

BMD Analysis – Mix #9 (PG64V-22, 20% RAP)

BMD Analysis – Mix #10 (PG64E-22, 20% RAP)

Balanced Mix Design Results

- Based on lab "verified" determined Optimum AC%
 - Optimum AC% is defined as average minimum asphalt content to achieve fatigue cracking performance
- For the 11 mixes tested;
 - 4 of 11 mixes were shown to be "Balanced"
 - 2 of 11 mixes had exactly minimum AC%
 - 5 of 11 mixes were not "Balanced" under asphalted
 - ALL mixes met the rutting requirements

Mix Type	Minimum Asph	Vol. vs	
типх туре	Performance	Volumetric	Perform.
Mix #1	6.6	6.8	0.2
Mix #2	5.6	6.1	0.5
Mix #3	6.5	6.8	0.3
Mix #4	6.7	6.8	0.1
Mix #5	6.5	6.2	-0.3
Mix #6	5.9	5.5	-0.4
Mix #7	6.5	6.1	-0.4
Mix #8	7.8	7.0	-0.8
Mix #9	6.3	6.3	0.0
Mix #10	6.4	6.0	-0.4
Mix #11	6.7	6.7	0.0

Balanced Mix Design Results

- Another factor to consider is not just minimum asphalt content, but the "range" within a BMD
- Narrow ranges would make mixture difficult to produce within tolerances
 - Most mixes resulted in an average BMD range that could be achievable during production
 - Including a tolerance for AC%

	Vol. vs	BMD AC%	RAP	Binder
илх туре	Perform.	Range	Content (%)	Grade
Mix #1	0.2	1.2	20	PG64V-22
Mix #2	0.5	2.7	15	PG64V-22
Mix #3	0.3	2.4	15	PG64V-22
Mix #4	0.1	1.0	10	PG64V-22
Mix #5	-0.3	2.1	20	PG64V-22
Mix #6	-0.4	4.7	20	PG64V-22
Mix #7	-0.4	3.4	15	PG64V-22
Mix #8	-0.8	0.5	15	PG64V-22
Mix #9	0.0	1.7	20	PG64V-22
Mix #10	-0.4	6.5	20	PG64E-22
Mix #11	0.0	3.6	20	PG64E-22

Summary and Conclusions

- NYSDOT investing in understanding BMD concepts and inclusion of performance testing to validate mix design
- Mixtures selected in study showed varying levels of rutting and fatigue performance
 - 5 of 11 PASSED BMD criteria; 4 of 11 FAILED BMD criteria
 - 2 of 11 had exact minimum AC% to meet fatigue
 - ALL mixes met rutting requirements!
- Majority of mixtures showed a BMD range that would allow for production and still maintain production tolerances

Summary and Conclusions

- Some questions that still need to be determined to move forward
 - Selection of BMD optimum asphalt content
 - Fatigue minimum + production tolerance?
 - Middle of BMD range?
 - Implementation of aging protocols?
 - Method should consider required time to reduce time delays
 - Quality control testing?
 - Implement different test methods for design and then QC testing?
 - What to do with failing results? Pay adjustments?
 - Timing of testing (how soon after specimen production)?
 - Educating regions and industry on proper testing and analysis procedures

Thank you for your time! Questions?

Be CAREFUL WHEN YOU ONLY READ CONCLUSIONS...

Reference: The Anscombe's quartet, 1973

Designed by @YLMSportScience

THESE FOUR DATASETS HAVE IDENTICAL MEANS, VARIANCES & CORRELATION COEFFICIENTS Thomas Bennert, Ph.D. Rutgers University 609-213-3312 bennert@soe.rutgers.edu