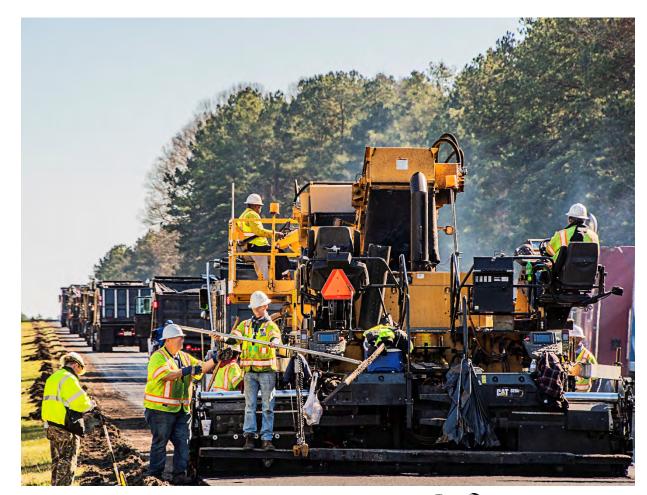


U.S. Department of Transportation Federal Highway Administration

FHWA MATC: Providing Assistance to the Northeast

NEAUPG 2020 October 28, 2020

Acronyms


- ABML-ID: Asphalt binder and mixture laboratory implementation and delivery
- ABT: Asphalt Binder Tester
- BMD: Balanced mix design
- CalTrans: California Department of Transportation
- CT_{index}: Cracking index
- E*: Dynamic modulus
- FHWA: Federal Highway Administration
- FI: Flexibility Index
- FTIR: Fourier transform infrared spectroscopy
- HWT: Hamburg wheel tracker
- I-FIT: Illinois Flexibility Index Test
- MaineDOT: Maine Department of Transportation
- MATC: Mobile Asphalt Technology Center

- mm: millimeter
- N_{des}: Design gyrations
- NRRI: Normalized rutting resistance index
- PG: Performance grade
- QA: Quality assurance
- RQL: Rejectable quality limit
- RSI: stress sweep rutting index
- S_{app}: cyclic fatigue index parameter
- SIP: Stripping inflection point
- TFHRC: Turner-Fairbanks Highway Research Center
- VBE: Voids filled with effective binder
- VMA: Voids in the mineral aggregate
- VTrans: Vermont Agency of Transportation

Outline

- MATC Overview & Mission
- Ongoing MATC Support to Northeast
 - MaineDOT BMD Data Analysis
 - VTrans BMD Data Analysis
- What can we do for you?

Mobile Asphalt Technology Center

MATC is on the move to serve the asphalt pavement community!

MATC Mission:

Our mission is to introduce new and emerging asphalt materials and construction technologies to States and industry, which bridges the gap between research and implementation.

MATC Goal:

These technologies and practices are implemented by agencies and industry to provide longerlasting, safer, better-performing, and more cost-effective asphalt pavements on our nation's highways.

MATC Objectives

- Demonstrate emerging technologies & maintain focus on customer needs
- Deploy technology from TFHRC, Every Day Counts, other research & development (R&D)
- Leverage the asset for whole Pavements program & increase MATC's impact

Core Activities

- Demonstrating test methods and equipment
- On-site support Equipment training
- Case examples developed from innovation trials
- Specification review (QA, materials, construction)
- Equipment loan program

Deployment

- Quality in Asphalt Paving Workshop: multiday, focused on flexible pavement
- Recorded video briefs: topical to MATC equipment

Level of troubleshooting

- On-site: within scope of standard or agency spec.
- In-depth: direct to FHWA ABML-ID

Post-installed pavement

- Density, sustainability, M&P option selection
- Surface characteristics (macrotexture, etc.)
- Monitoring performance (handheld, other)

MATC Testing Capabilities

Mixture Tests	Materials Tests	Field Tests
AMPT suite of tests (E* , cyclic fatigue)	X-Ray Fluorescence Spectrometer for binder's or markings' chemical elements	Paver-mounted thermal infrared for real-time mat temperatures
Overlay Test for reflective cracking	ABT (true grade of binder)	MIT-Scan T3 for in-place pavement thickness
Flexibility index test for fracture resistance	* FTIR looks at molecules in binder (lime, polymers,)	Circular Track Meter for measuring mean profile depth
IDEAL-CT for crack resistance	* Binder performance testing	Dielectric profiling system for in-place density
IDEAL-RT for rutting resistance	* Done at TFHRC	Laser-based measurement of mean profile depth

Other support activities: AASHTOWare Pavement™ ME Design analysis

Asphalt pavement specification review

Construction density spec review (mat and joints)

MATC – Technology Transfer

- Use MATC as a communication vehicle to stakeholders
- Use short communication bursts (1-pagers, social media, etc.) to raise awareness on FHWA efforts
- Current Topics:
 - Enhancing in-place density
 - In the works: Ohio DOT experience with dielectric profiling systems

Federal Highway Administration 49,767 followers 1d • 🚱

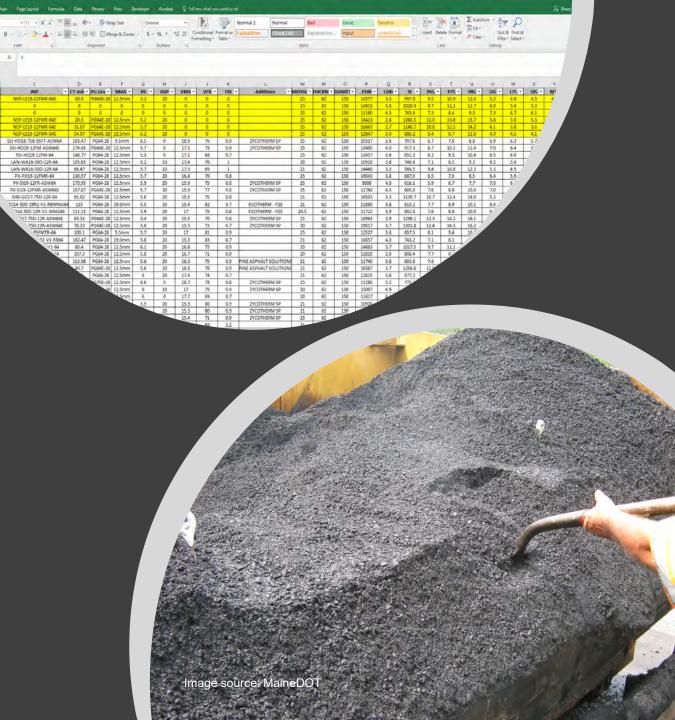
It is vital to know the strength and durability of your pavement materials in order to ensure your roadways are safe and effective for our nation's motorists. For asphalt pavements, the FHWA Mobile Asphalt Technology Center demonstrates a variety of asphalt mixture tests that can predict in advance the potential for cracking or rutting to occur. Learn more about these tests and how you can get FHWA MATC to assist with your next project. https://bit.ly/2Vp9DMI

...

	Technical Assistance	Specification reviews (SC, VT, RI, FL) Performance test analysis (VT, ME)	
MATC Virtual Support	Testing Plans	BMD cracking tests (FDOT) Macrotexture measuring (FDOT) BMD Introduction (RIDOT) IDEAL-RT evaluation (MaineDOT) I-FIT Round Robin Testing (Caltrans) Binder testing & analysis (VTrans)	 A series of the seri
Activities	Technology Transfer	Communication bursts (1-pagers social media, etc.) on FHWA efforts	
	Marketing Plan	Social media posts New brochure Website updates	

Ongoing MATC Support to the Northeast

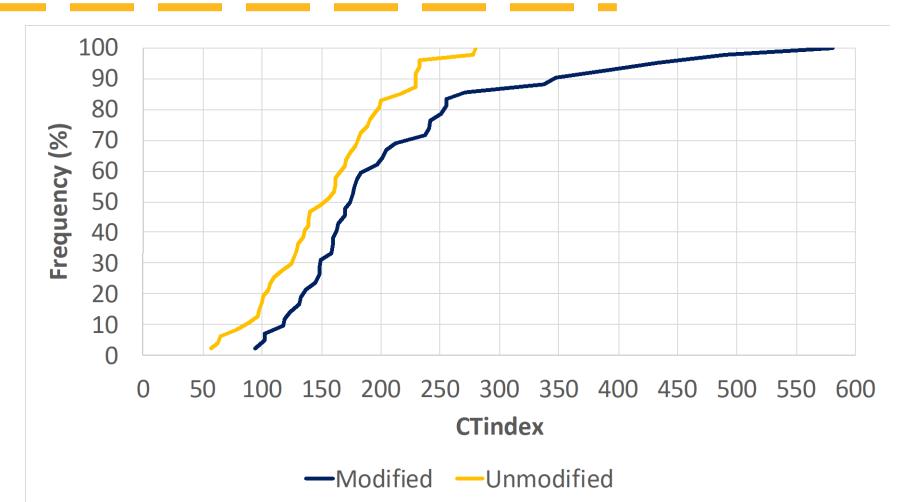
- MATC project visits
 - ME: 2017
 - PA: 2017
 - VT: 2021
- BMD Testing Analysis
 - ME & VT
- Specification Review
 - RI & VT
- Testing Plans
 - RI & VT
- ABML-ID Project Involvement
 MD, ME, & NH



MaineDOT Data Analysis

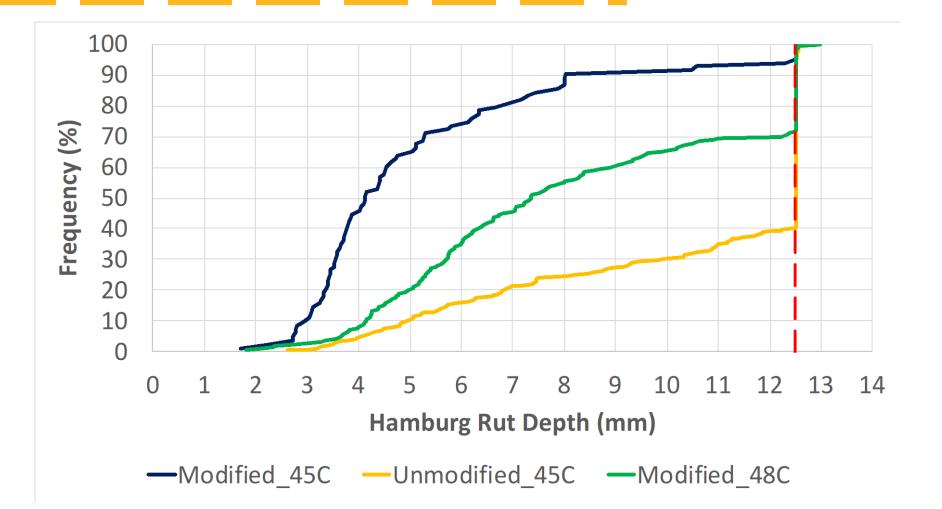
Data Shared by MaineDOT

- Database from multiple years of testing:
 - Ideal Cracking Test (CT_{index})
 - Hamburg Wheel Tracking (rut depth, SIP, NRRI)
 - AMPT Stress Sweep Rutting (SRI)
 - AMPT Cyclic Fatigue (S_{app})
 - Volumetric data
- Field produced mix sampled at project site – reheated and tested


MaineDOT Questions

- What are the differences between modified and unmodified asphalt mixtures in Maine?
- How can changes in volumetric properties affect the performance indexes?
- What are the correlations between the performance indexes and field performance of MaineDOT mixtures?

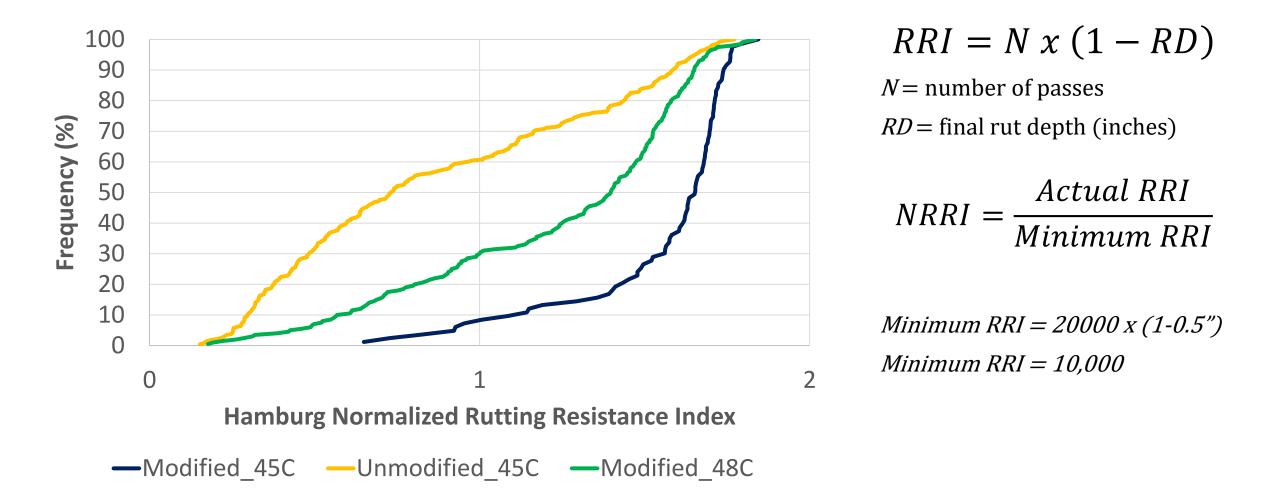
Modified vs. unmodified mixtures @ 25C



MODIFIED				
MEDIAN AVG STDEV COUNT				
175.32	210.3	106.1	42	

UNMODIFIED			
MEDIAN AVG STDEV COUN			
156.47	155.2	54.4	47

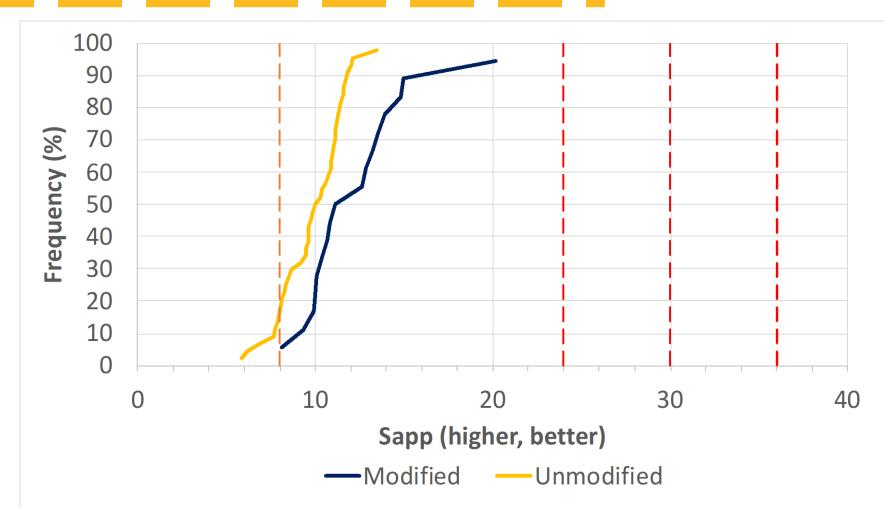
Hamburg Final Rut Depth


MODIFIED @ 45C					
AVG	AVG STDEV Count				
5.2	5.2 2.7 83				

MODIFIED @ 48C				
AVG	AVG STDEV Count			
8.2	8.2 3.4 200			

UNMODIFIED @ 45C				
AVG	AVG STDEV Count			
10.4	3.1 263			

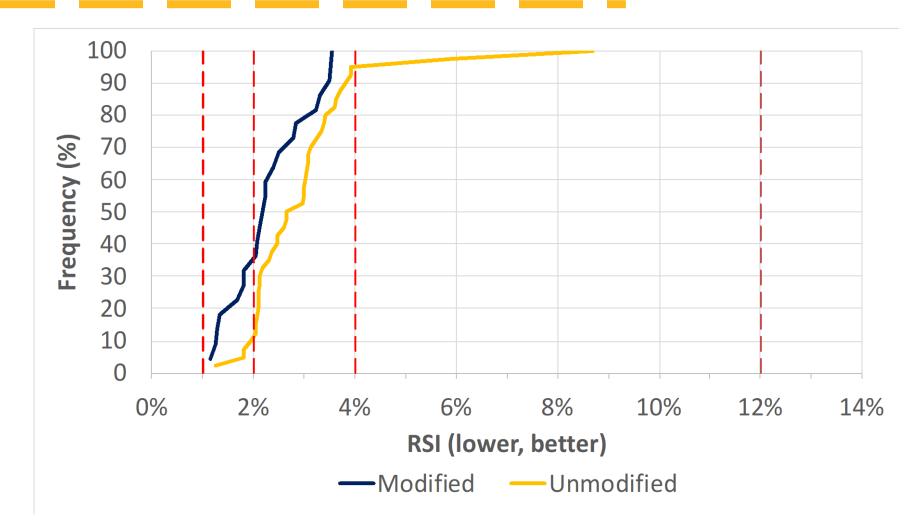
Normalized Rutting Resistance Index (NRRI)



Thresholds of S_{app} and RSI

Traffic	Lin	nits	Tion	Decimation
(million ESALs)	Sapp	RSI	Tier	Designation
Less than 10	<i>S_{app}</i> > 8	RSI < 12	Standard	S
Between 10 and 30	$S_{app} > 24$	RSI < 4	Heavy	Н
Greater than 30	<i>S_{app}</i> > 30	RSI < 2	Very Heavy	V
Greater than 30 and slow traffic	<i>S_{app}</i> > 36	RSI < 1	Extremely Heavy	E

Cyclic Fatigue (S_{app})



MODIFIED @ 48C				
MEDIAN AVG STDEV Count				
11.9	12.6	3.51	18	

UNMODIFIED @ 48C					
MEDIAN AVG STDEV Count					
10.2	10.2 10.0 1.86 44				

Stress Sweep Rutting (RSI)

MODIFIED					
MEDIAN AVG STDEV Count					
2.2% 2.4% 0.76% 20					

	UNMODIFIED			
MEDIAN	AVG	STDEV	Count	
2.1%	3.0%	1.25%	40	

MaineDOT Summary

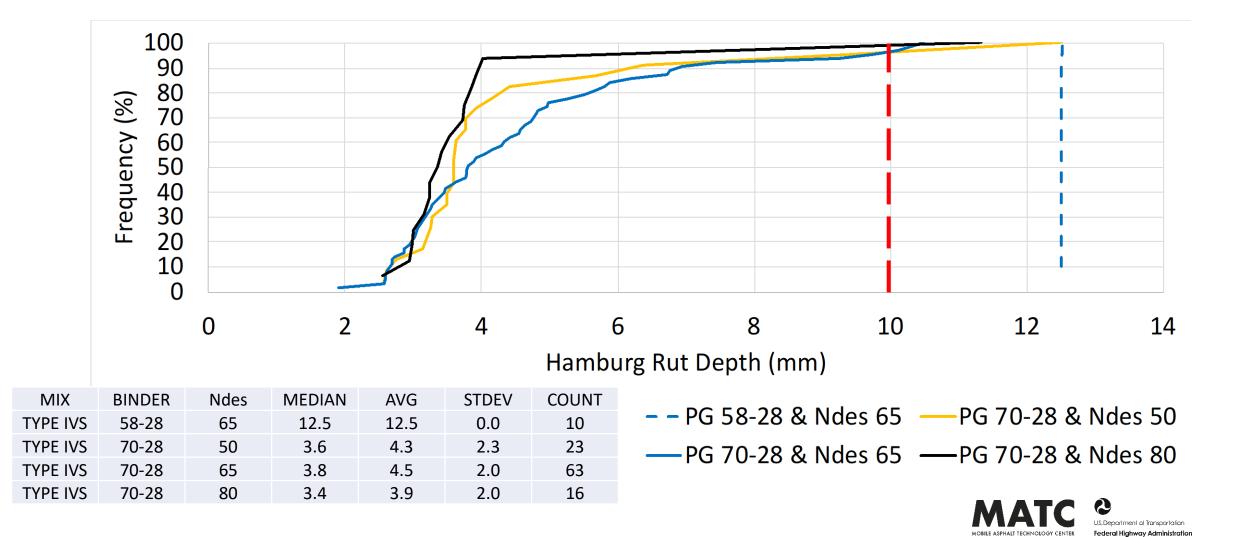
- No relationship between different indices for cracking and rutting
- No clear correlation between volumetrics and index properties on global scale analysis
- Distribution curves show clear improvement in performance testing values with polymer modification
- Differences seen in NMAS and producer
- Continue to investigate correlations between BMD values and field performance

VTrans Data Analysis

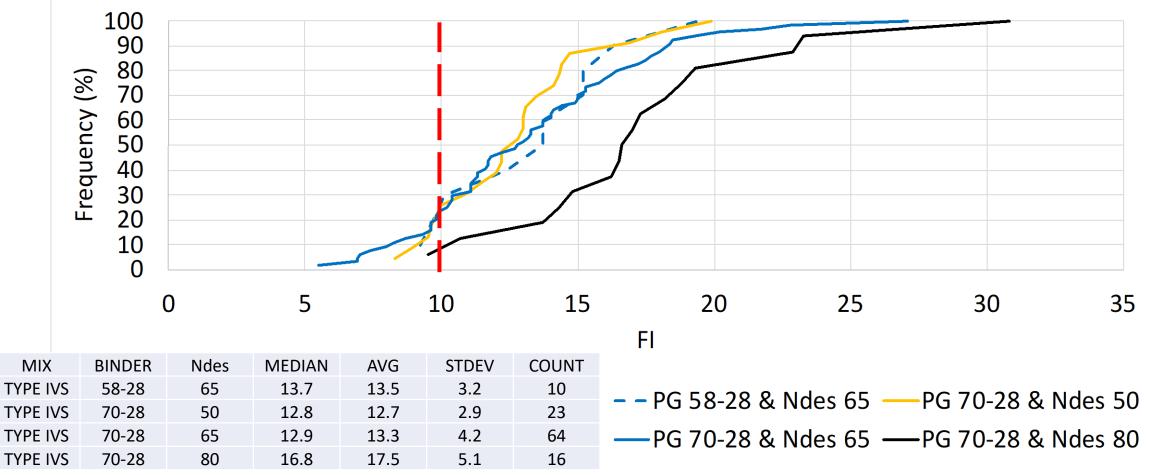
Data Shared by VTrans

- Database from multiple years of testing:
 - I-FIT (Flexibility Index)
 - Hamburg Wheel Tracking (rut depth, SIP, NRRI)
 - Volumetric data
- Field produced mix sampled at plant site – reheated and tested

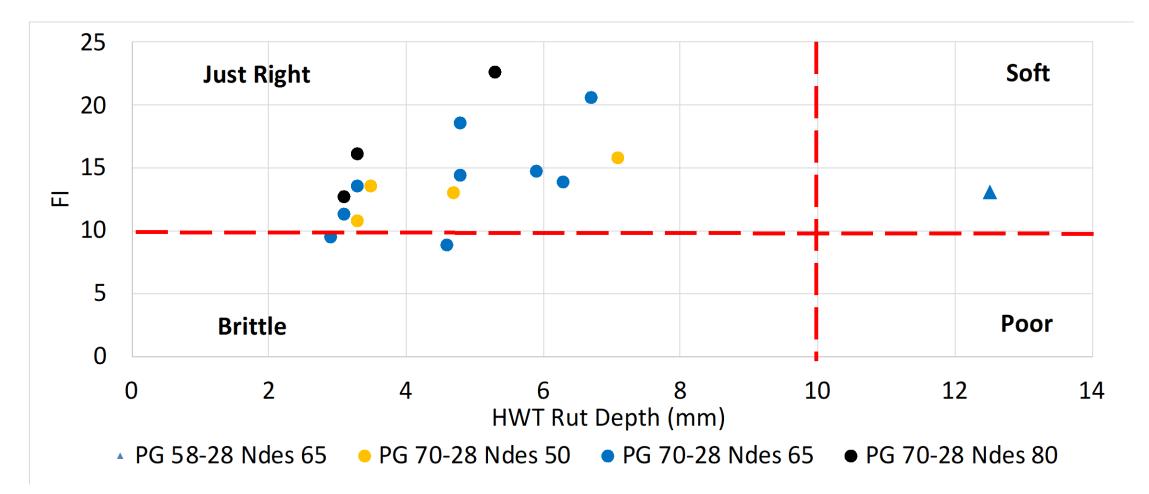
VTrans Performance Engineered Mix Design


Superpave Type IVS 9.5-mm mixes

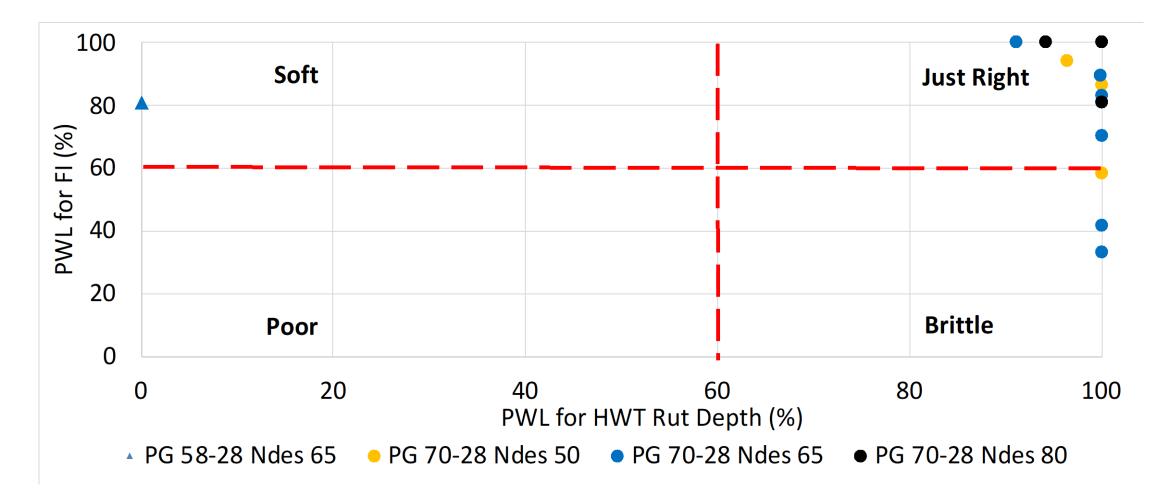
Hamburg (T 324) criteria @ 45°C and 7.0 ± 0.5 % STA


- Max average rut depth @ 20,000 passes: 10.0 mm
- Stripping inflection point (SIP): $\geq 15,000$ passes
- Flexibility Index Test (FIT) (TP 124) @ 25°C and 7.0 \pm 1.0 % STA
 - Minimum FI: 10.0
- Lot size is completed project
 - Sublot size: 3,000 tons
 - A minimum of 3 sublots needed for statistical evaluation
- Rejectable quality limit (RQL): 60%

HWT Cumulative Distribution for 9.5 mm



FI Cumulative Distribution for 9.5 mm



Lot Average for Type IVS (\geq 3 Sublots)

PWL for Type IVS (\geq 3 Sublots)

Statistical Analysis

Conducted in two steps

- Step 1 was to determine the effect of the following (specifications) categorical parameters on Hamburg and FI test results
 - Mix type
 - Binder grade
 - Ndes
- Step 2 was to evaluate the effect of the following volumetric properties on Hamburg and FI test results
 - Air Voids
 - VMA
 - Dust/Binder
 - Ignition Oven AC

Summary of Analysis of Variance ($\alpha = 0.05$)

Effect on average rut depth

Effect on average FI

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	6	155.843	25.974	7.10	0.000
Mix Type	3	46.624	15.541	4.25	0.012
Binder Grade	1	96.852	96.852	26.48	0.000
Ndes	2	4.881	2.440	0.67	0.520
Error	32	117.024	3.657		
Lack-of-Fit	2	38.404	19.202	7.33	0.003
Pure Error	30	78.620	2.621		
Total	38	272.867			

S	ource	DF	Adj SS	Adj MS	F-Value	P-Value
F	Regression	6	264.282	44.047	3.29	0.012
	Mix Type	3	91.889	30.630	2.29	0.097
	Binder Grade	1	1.775	1.775	0.13	0.718
	Ndes	2	131.557	65.779	4.92	0.014
E	rror	32	428.001	13.375		
	Lack-of-Fit	2	22.907	11.453	0.85	0.438
	Pure Error	30	405.094	13.503		
Т	otal	38	692.283			

Volumetric Effect on HWT & FI

HWT – Rut Depth

I-FIT - FI

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	5	186.91	37.381	14.35	0.000
Air Voids	1	35.94	35.944	13.80	0.001
Mix Type	3	38.24	12.747	4.89	0.006
Binder Grade	1	92.22	92.222	35.40	0.000
Error	33	85.96	2.605		
Lack-of-Fit	20	54.56	2.728	1.13	0.420
Pure Error	13	31.40	2.415		
Total	38	272.87			

	Source	DF	Adj SS	Adj MS	F-Value	P-Value
	Regression	6	430.29	71.716	8.76	0.000
	Air Voids	1	56.16	56.161	6.86	0.013
	VMA	1	63.58	63.578	7.77	0.009
	Dust/Binder	1	50.61	50.607	6.18	0.018
	Ignition AC (%)	1	34.26	34.262	4.18	0.049
	Ndes	2	220.94	110.468	13.49	0.000
I	Error	32	261.99	8.187		
-	Total	38	692.28			

Summary

All the mixes tested had good rutting performance based on the Hamburg test results, except...

- Type IVS mixes with PG 58-28. These mixtures appeared to be sensitive to moisture damage (SIP) in the Hamburg test
- Factors significantly affecting Hamburg Rut Depth
 - Mix type (IIS, IIIS, IVS)
 - Binder grade (58-28, 70-28)
 - Air voids (QC/acceptance air voids)
- Factors significantly affecting FI
 - Ndes (50, 65, 80) with Ndes = 80 resulting in higher FI
 - VBE (= VMA Air Voids)

What can the FHWA MATC do for you?

- Project Site Visits (Returning in 2021)
- Specification Review
 - Comparison to "Gold Medal Density" States is popular
- BMD Data Analysis
- Technology Transfer
- ABML-ID program
- Equipment Loan Program
- Quality in Asphalt Paving Process Workshop (Coming in 2021)

Contact Us

Derek Nener-Plante, M.S., P.E.

Pavements and Materials Engineer FHWA Resource Center <u>derek.nenerplante@dot.gov</u>

202-763-4017

Leslie McCarthy, Ph.D., P.E.

Senior Asphalt Pavement Engineer FHWA Headquarters <u>leslie.mccarthy@dot.gov</u> 202-981-2875

Thank you!

