NJDOT HMA/Pavement Research Program

Thomas Bennert Rutgers University, NJ

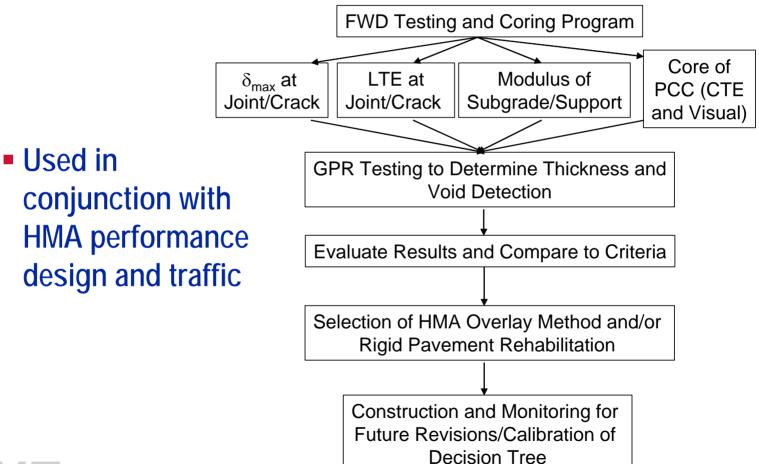
<u>NorthEast Asphalt User's/Producer's Group</u> Burlington, VT October 20th, 2005

Presentation Overview

- Reflective Cracking
- Implementation of MEPDG
- FHWA Quiet Pavement Pilot Program
- Winter Maintenance of Friction Course Mixes
- Pavement Preservation Program

Flexible Overlays for Rigid Pavements

- 2 year study to evaluate use of HMA overlays on rigid/composite pavements to minimize reflective cracking
 - Extensive material testing and FEM modeling
 - Performance-based HMA design
 - (Balancing rutting and fatigue performance)
 - Optimizing forensic evaluation of PCC/composite pavements
 - Development of "Decision Tree" to select appropriate rehabilitation strategy


Tentative Performance-Based HMA Design

- Similar to one proposed at TTI
 - Determine optimum AC% (OAC) by Superpave Volumetrics
 - Construct samples at -0.3% OAC, OAC, and +0.3% OAC
 - Perform:
 - APA, Flexural Fatigue, and TTI Overlay
 - Select final AC% by overall performance
 - HMA placed on PCC (emphasize fatigue performance)
 - HMA placed on surface (emphasize rutting performance)

Tentative Decision Tree Input

Parameters

NJDOT Interlayer Mix Specification

- NJDOT thought Route 10 job was successful
 - Had problem with proprietary nature of this application (back in 1997)
- NJDOT Reflective Crack Relief Interlayer (RCRI) Specification
 - Collaboration between Rutgers, SemMaterials and CITGO Asphalt
 - Utilizes performance-based specifications as pass/failure criteria during design and construction
 - Volumetric properties specified to aid in minimizing potential construction/compaction problems and maximize performance

NJDOT RCRI Specifications

Binder

- ♦ > 7% AC
- ♦ High Temp ≥ PG70 (no low temp required)
- RTFO Elastic Recovery > 75% @ 25°C
- Separation Test < 6°C after 4 hrs</p>
- Aggregate blend (NO RAP ALLOWED)

<u>Sieve</u>	<u>% Passing</u>
9.5mm	100
4.75mm	75 – 100
2.36mm	30 – 85
0.075mm	6 - 14

RCI Mix Design Criteria

- N_{design} = 50 gyrations
- Air voids: 1 to 3%
- VMA ≥ 16%
- Performance Criteria
 - Fatigue (AASHTO T321) > 100,000 cycles (ave.)
 - ϵ_t = 2,000 $\mu\text{-strain},$ 15°C, 10 Hz, AV = 3 \pm 1.0%
 - Rutting (AASHTO TP63) < 10 mm Rutting</p>
 - -60° C, AV = 3 ± 0.5%, 100 psi hose, 100 lb load

Construction

Gradation Control

- 2.36mm (+/- 4.0% tolerance)
- 0.075mm (+/- 1.4% tolerance)

Volumetrics

- Mat compacted between 2 to 4% air voids
 - Minimize compaction issues while maximizing performance
 - Air Voids (+/- 0.8% tolerance)
- VMA (-1.0% tolerance)

 Performance (min. once per project within 1st 2,000 mix tons, every 600 tons thereafter)

Flexural Beam Fatigue (AASHTO T321) – same criteria as before

Implementation of MEPDG

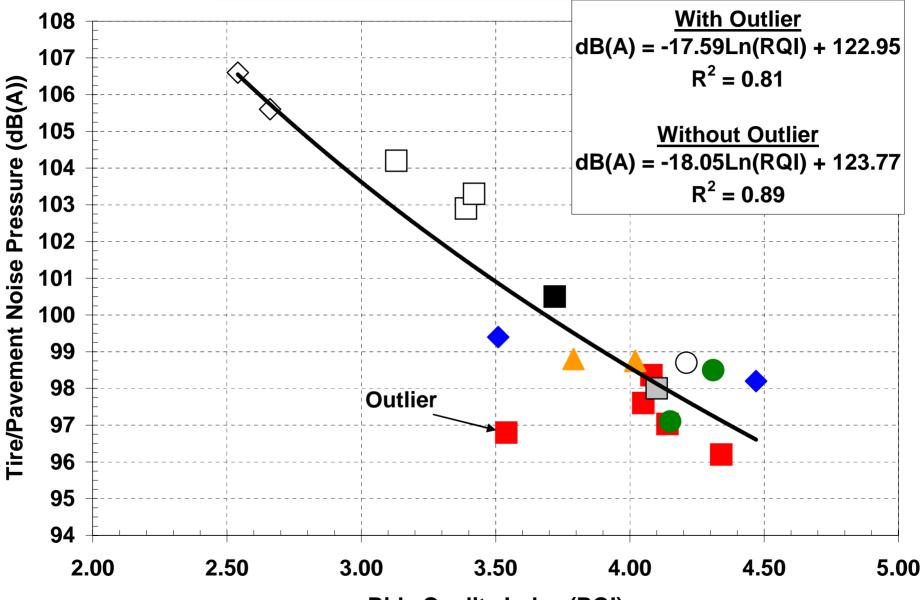
- Developing HMA database of dynamic modulus and IDT/Creep Compliance
 - Utilizing plant produced samples (aging, RAP)
 - Comparing performance using repeated load, SST Repeated Shear and Flexural Beam Fatigue testing
- Completed database for unbound materials
 - Resilient modulus, permeability, CBR

TRAINING!

- "Hands on" using software in computer lab
 - Materials and Traffic Inputs

DGIT - Materials Input (May 2005)

Quiet Pavement Pilot Program (QPPP)


- Main Goal: To allow the use of pavement surface to eliminate or reduce the height of noise walls for highway noise mitigation
- FHWA established program
 - Initiated by Arizona DOT
- Must have noise measurements for minimum of 5 years
 - Must also include texture data, ride quality, skid resistance

NJDOT work will also evaluate winter maintenance
 A / **T** issues (not included in Arizona and California work)
 TGERS

Relationship Between Noise and Wet **Skid Resistance** 108 OGFC 107 $\langle \rangle$ ▲ Micro-surface - Type 3 Poor Tire/Pavement Generated Noise (dB(A)) 106 \Diamond Novachip 105 • 12.5 mm Superpave 104 9.5 mm SMA 103 ■12.5 mm SMA 102 □ PCC (No Finish) 101 **◇ PCC (Transverse Tined) OPCC (Diamond Grinding)** 100 99 98 97 AR AR 96 **Optimal** 95 94 35 40 45 50 55 60 65

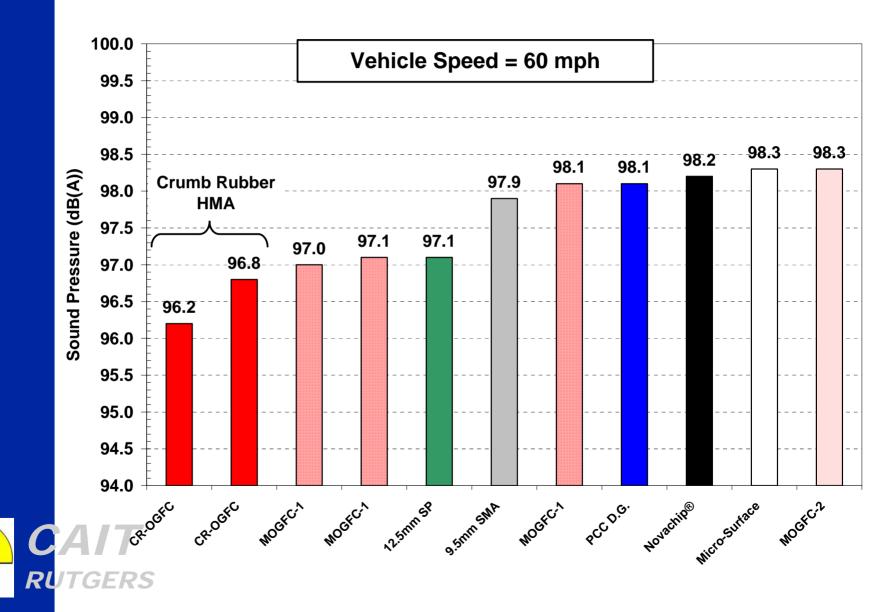
Wet Skid Number (SN₄₀)

Tire/Pavement Noise vs RQI

Ride Quality Index (RQI)

Measurement of Traffic Noise in QPPP

- Wayside measurements
 - Measure the effects of low-noise pavements on communities
 - Vary distance and height from pavement
 - Used in areas of "immediate need"
- Source measurement
 - Measures the effect of low-noise pavements on the tire/pavement interaction at the source
 - Testing on experimental sites and wayside sites

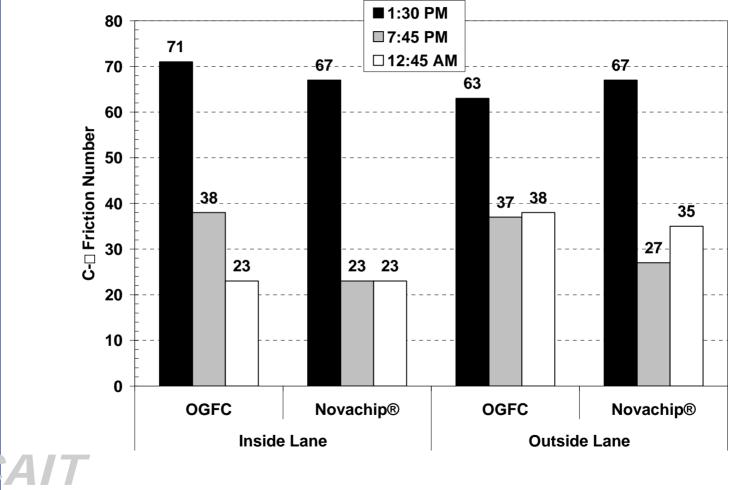

Recent NJDOT/Rutgers research used Close
Proximity – moving to Sound Intensity for QPPP

Sound-Intensity

10 Quietest Pavement Surfaces Tested

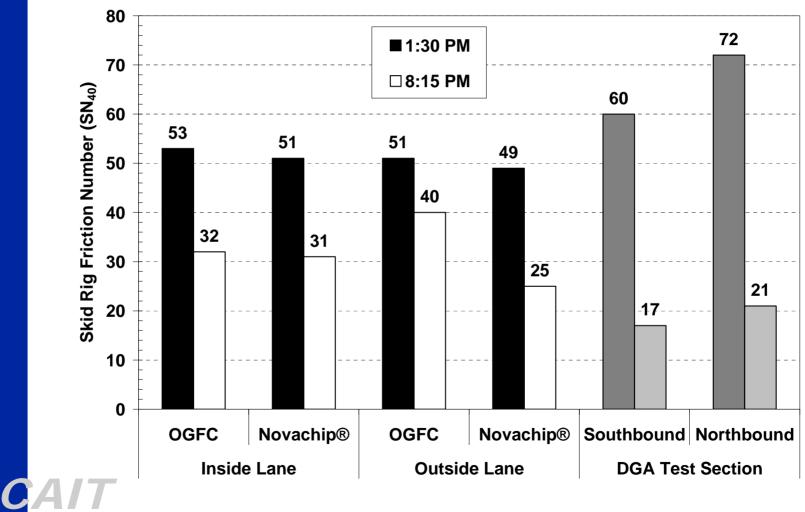
NJ's Winter Maintenance Issues

NJDOT

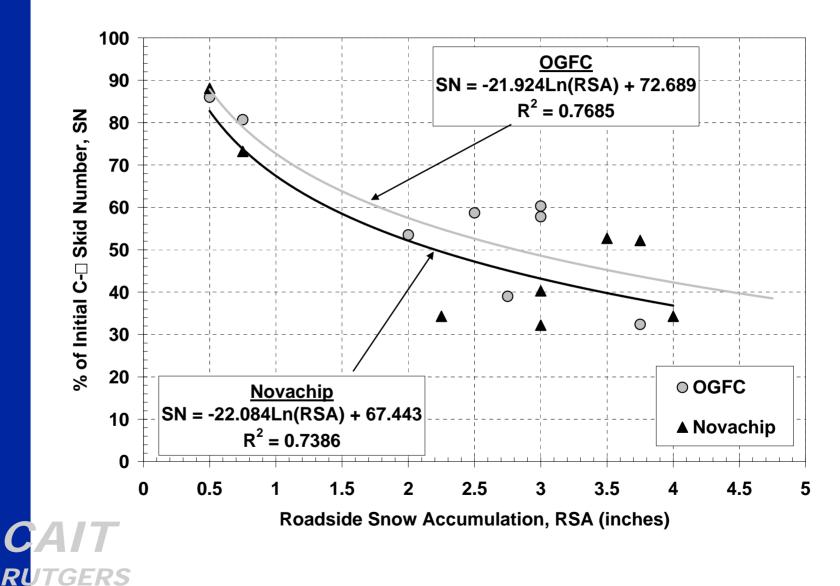

- Rock salt is predominant method
- Found OGFC significantly more difficult to maintain ice-free
 - More frequent applications and still tends to be icier
- 2005 began the use of brine solution
- NJ Garden State Parkway (NJGSP)
 - 100 of 1,200 lane miles OGFC
 - Uses liquid magnesium-chloride for de-icing
 - Combines surface temperature measurements and weather forecasts to know when to treat
 - Pre-treats OGFC surfaces (If too late, magnesium-chloride washes off)
 - OGFC requires twice the total application as other DGA

Winter Maintenance of Friction

Course Surfaces


- Meeting in November to discuss research/testing plan
- If OGFC to be selected as "Quiet Pavement", must improve winter maintenance
- Purpose is to optimize de-icing methods for friction course mixes
- Focusing on:
 - De-icing materials
 - Application rates
 - Measuring friction during storm event
 - Deceleration device (Coralba Cμ-meter)
 - NJDOT Skid Trailer

Skid Friction – Deceleration Method


RUTGERS

Skid Friction – Skid Trailer

RUTGERS

OGFC vs Novachip®

<u>QPPP and Pavement Preservation</u>

- Data developed during QPPP will also be used to optimize NJDOT's Pavement Preservation Plan
 - NJDOT initiating "new" Pavement Preservation Plan for 2006
 - Utilizing "thin-lift" mixes (< 1.0 inches)
 - Fine-graded OGFC, 9.5mm SMA, micro-surfacing, Novachip®
 - Looking to place 1,000 lane miles per year of "thin-lift" HMA for Pavement Preservation
 - Currently only doing 500 lane miles

Other HMA-Related Research

Influence of RAP % on HMA performance

- PG64-22 and PG76-22 (0, 15, and 30% RAP) Plant Produced
- E*, Flexural Fatigue, Low Temp, Rutting
- Fatigue Properties of PPA Modified HMA
 - Compare SBS, SBS+PPA, and PPA modified
- Optimizing RCI Mixture and Design
 - Vary gradations, aggregate sources, volumetrics to optimize fatigue, permeability, permanent deformation

Thank You for Your Attention!

Contact Information bennert@eden.rutgers.edu 732-445-5376

