Binder Specifications with a Focus on Cracking

Dr. Geoffrey M. Rowe Abatech Inc.

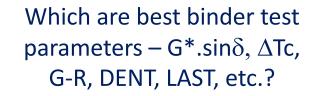
North East Asphalt User/Producer Group

October 18th, 2017

Objectives

• To consider binder specification requirements and how specification parameters help us to understanding cracking performance

Cracking


- Cracking is a phenomena that occurs at higher stiffness
 - Use stiffness as surrogate for temperature for understanding comparable performance
 - Can then use a temperature range for a test based on this understanding
 - Conventional binders (unmodified) all have similar performance window based upon stiffness
 - Toughness peaks in mid stiffness region
 - Close to Visco-elastic transition temperature (VET) or Cross-over frequency temperature, Cross-over modulus, G_c, tan δ = 1 and binder stiffness 10 to 50 MPa
 - Temperature for cracking (durability) window covers stiffness range 1MPa to approx. 500 MPa
 - Need to define differences that polymers offer with regard to performance
 - Need a ultimate property performance test
 - Some aspects associated with cold temperature behavior still need more research

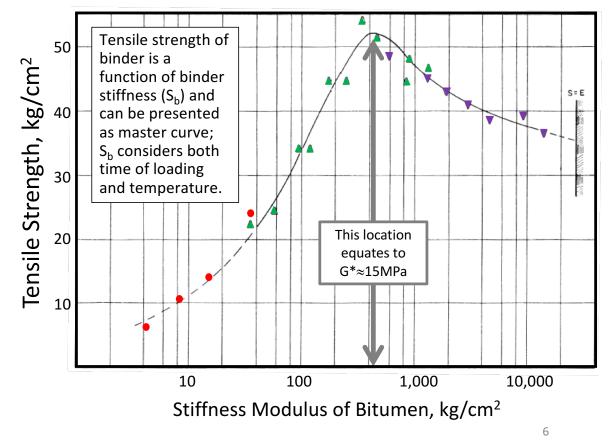
Linkage of cause and effects – aging and cracking

Block Cracking

Fros

Fatigue

Suffolk, England (1983


Strength versus temperature

- Historical Perspective
- Wide variety of research where strength is normalized with respect to temperature
 - Huekelom (AAPT 1966) essential reading
 - Ferry, Viscoelastic Properties of Polymers, 3rd Edition
 - Strategic Research Program DTT Test, SHRP A-369 (1994)
 - Polymers in non-asphalt literature, extensive literature
 - Etc.

Binder strength master curve

Hukelom, AAPT, vol 35, p 358, "Observations on the rheology and fracture of bitumens and asphalt mixtures"

- The concept that for conventional asphalt binders a tensile strength/strain master curve exists is well know for past <u>50 years</u>
- Holds true for many types of tests

Ferry's Book (T. Smith data)

- Similar results for polymers
- Example:
 - Styrene-butadiene rubber
 - Tensile strain
 - Data is shifted to a reduced strain rate that captures both time and temperature

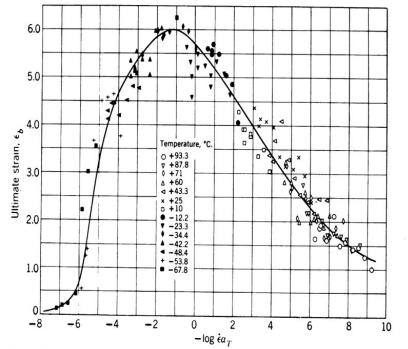
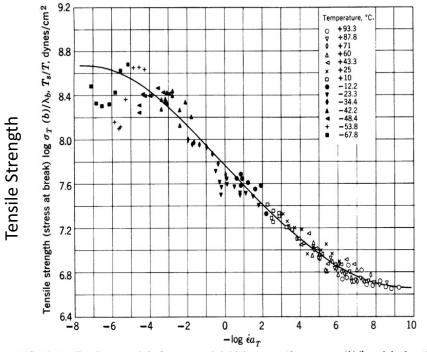
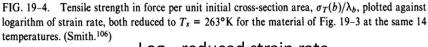
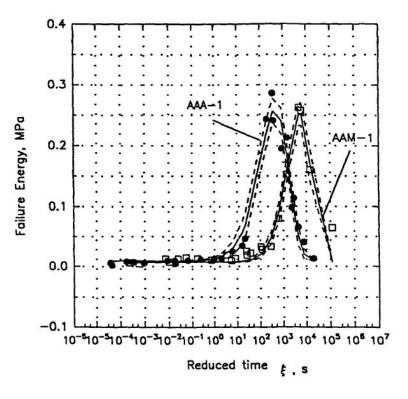




FIG. 19-3. Tensile strain at break plotted against logarithm of strain rate (in sec⁻¹) reduced to 263° K for a cross-linked styrene-butadiene rubber at 14 temperatures as indicated (Smith.¹⁰⁶)

Ferry's Book (T. Smith data)

- Styrene-butadiene rubber
- Tensile strength
 - Data is shifted to a reduced strain rate that captures both time and temperature

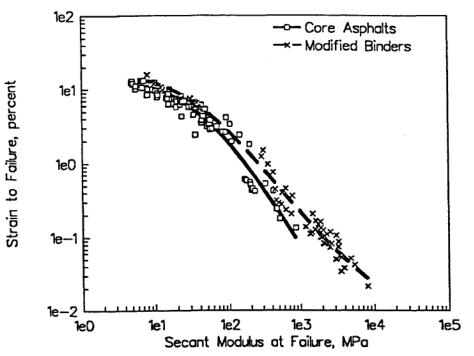
Log₁₀ reduced strain rate


SHRP A-369, Anderson et. al (1994)

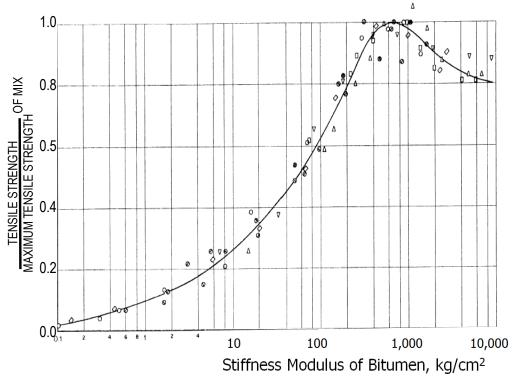
- Failure master curves of stress, strain and energy for conventional binders
- Functional form for energy

 $F(\xi) = A + \beta 1[(Z)^{(\beta 4-1)}][\exp(-(Z)^{\beta 4})]$

- $F(\xi)$ = failure strain or failure energy
 - A = constant
 - $\beta_1 = magnitude parameter$
 - $Z = (\log(\xi) \beta_2)/\beta_3$
 - β_2 = location parameter
 - = $0.5392\beta_3$ for failure strain master curve
 - = $0.5011\beta_3$ for failure energy master curve
 - β_3 = scale parameter
- β_4 = shape parameter, fixed (constant) at 10
- $\log(\xi)$ = common log of reduced time, $\xi = t/a(T)$
- a(T) = shift factor obtained from rheological measurements

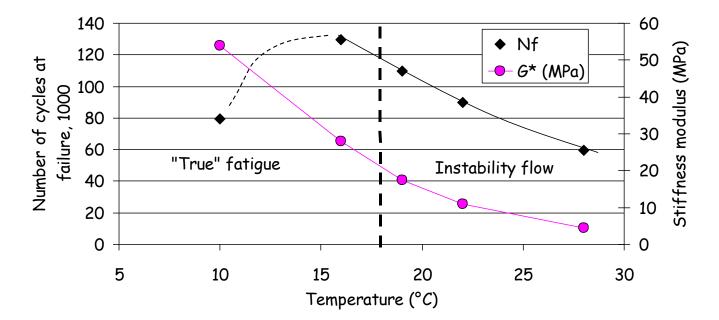

Note – reduced time – not adjusted to stiffness

9


SHRP Project A002 – Failure strain master curve

- Similar data from the SHRP project demonstrated the same effect
- This curve is strain at failure in DTT test
- Binder stiffness expressed as secant modulus

What about mix properties

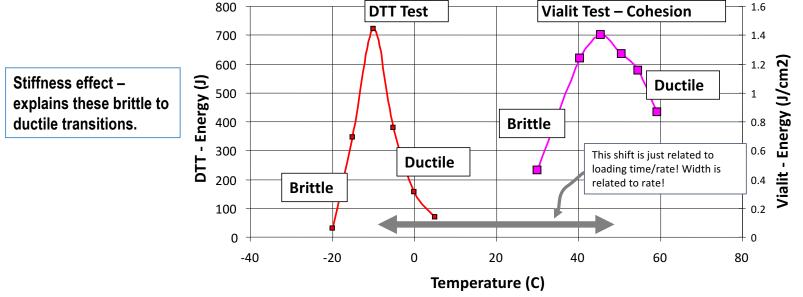

- We know binder and mixture properties are related
- Items to consider
 - Binder rheology on mix rheology
 - Effect of mix aging versus binder aging
 - What mix parameters should we be considering
 - How we capture mix parameters
 - Important to consider loading time and temperature – fracture properties of mix depend upon the stiffness of the binder!

Stiffness vs. strength

- Stiffness important to describe strength, strain and properties at break
 - Could use other parameters that include effect of time and temperature
 - Stiffness is conceptually easy to understand since we use it as a specification parameter
 - Could use S(t), G*, E(t), etc.
- Properties are both a function of loading rate and temperature!
 - Applies to range of visco-elastic materials, bitumen, asphalt mixes, rubber, SBS, others, etc.
 - All practical materials going into HMA!

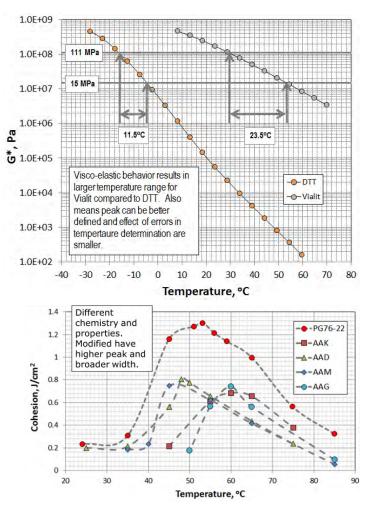
"Fatigue" vs. Temperature and Stiffness (G*)

Anderson, Marasteanu, Planche, Martin and Gauthier - Evaluation of Fatigue Criteria for Asphalt Binders – TRB 2001

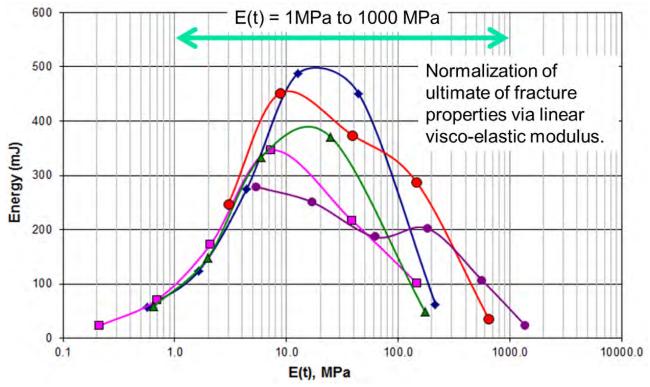

Stiffness range where transition from "instability flow" to "fatigue"

 Range in stiffness where fatigue cracking and instability flow dominate – G* = 9 to 28 MPa

Binder	Fatigue cracking	Instability flow
Unmodified	28 to 55 MPa	5 to 18 MPa
SB crosslinked	15 to 45 MPa	5 to 10 MPa
EVA modified	13 to 45 MPa	5 to 9 MPa


Other data sources

 Many other data sources will show this type of behavior since it is descriptive of physical behavior – for example DTT versus Cohesion tests


Understanding the cohesion

- Position and width of curve in an ultimate property test depends upon three factors
 - Rheology
 - Loading rate
 - Strength
- Uses cohesion range and height to qualify differences in PmB modified binders in some specifications

Range from viscous to flow type behavior

- DTT tests on various materials
- Range is similar for modified and unmodified materials
- Range is similar but peak heights are different for modified materials

17

Black space

- Originates in electrical engineering and adapted for asphalt technology
- Traditionally shown a plot of G* versus δ
 - Better to consider as measure of stiffness vs. relaxation
- Examples in asphalt engineering
 - Used since early 1970's
 - Mid 1990 S vs. m (parameters from Bending Beam Rheometer)
 - Extensively used in Europe
 - G* and δ in recent USA studies linked to Glover-Rowe concept

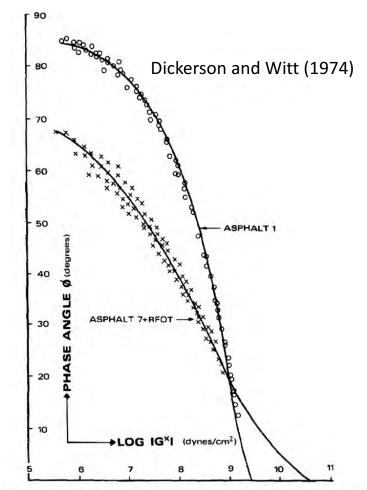
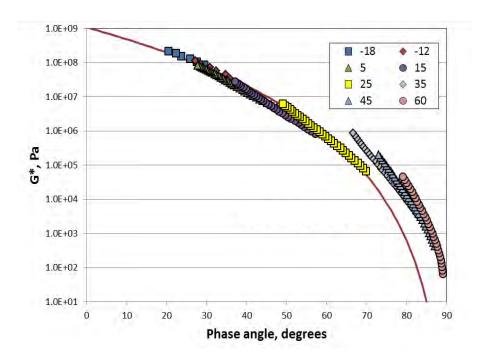
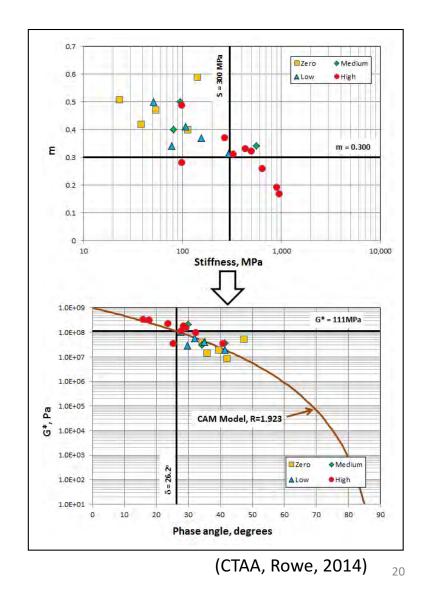
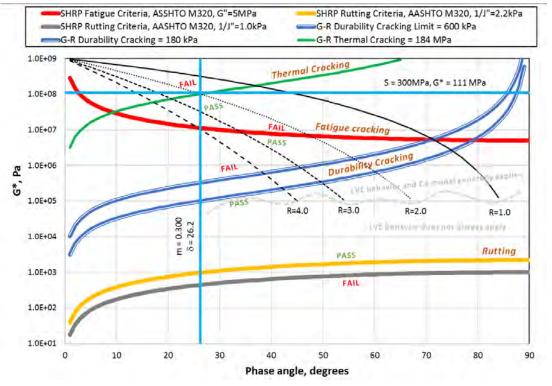



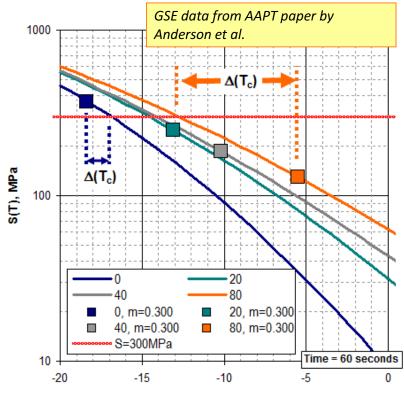
Fig. 4. Hyperbola model—Black's representation of the complex plane (asphalts 1 and 7 RFOT). $1 \text{ dyne/cm}^2 = 0.1 \text{ Pa}$


Black space

- Typical example for asphalt binder – works well within certain well defined limits
- We can then plot on this type of graph our specification functions
- CA model defines rheology in region of 10⁵ to 10⁹ Pascals to a good accuracy
 - From this possible to calculate G-R, G_c, Δ T_c and other parameters

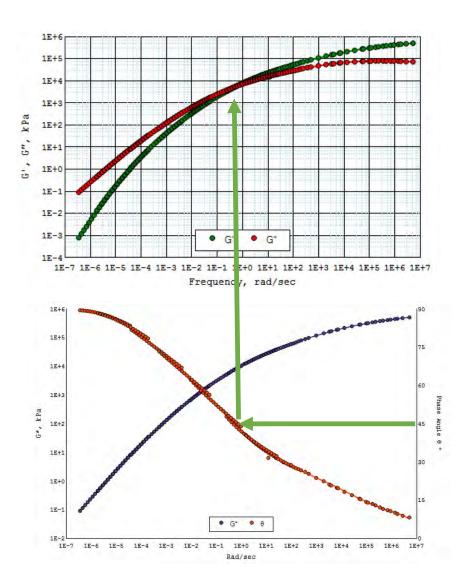

Black space BBR

- Black space concept applies equally to data from BBR
 - Need to capture stiffness and relaxation properties
 - S(t) is related to G*
 - m(t) is related to $\boldsymbol{\delta}$
- Example shown is for BBR validation done during SHRP (top right) compared to the same data shown via an interconversion to G* and δ using approximation relationships

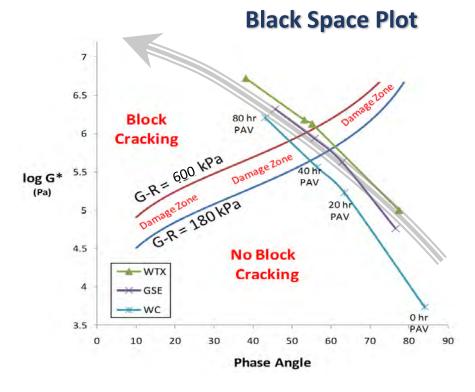

Limits in binder testing for Black space

- The graph shows limits for specification parameters in use today, and some alternates, all expressed in a Black space for asphalt binder
 - Current specifications
 - G*.sin δ 10rads/sec, fatigue cracking
 - $G^*/sin\delta 10rads/sec,$ deformation/rutting
 - Alternate considerations
 - Durability and thermal cracking
 - G*.(sinδ)2/cosδ
 - Different limits, rates and temperatures apply
 - Deformation outside area covered by linear visco-elastic binder properties

What is ΔT_c ?


- T_{S(60s)} -T_{m(60s)}
- ΔT_c defines the slope of the stiffness curve in the temperature domain
- Unit is °C
- Is a shape parameter in the higher stiffness region – related to temperature susceptibility and the rheological index

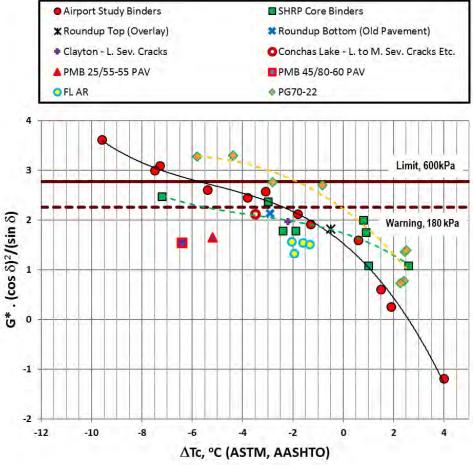
Temperature, °C


What is G_c?

- G_c is the cross-over modulus
- Is the modulus of the binder when the phase angle is 45°
- Is the modulus when $G^*.cos\delta$ = $G^*.sin\delta$ (or G' = G'')
- Is related to the R value in the CA model
- Also called G^*_{VET}

What is Glover-Rowe (G-R) parameter ?

- G-R = G*.($\cos \delta$)²/sin δ
 - Defined at 15°C and 0.005 rads/sec
- This defines a point within a Black space plot of G* vs. phase angle
- Is a point property in a similar manner to S, m, G*.sinδ, G*/sinδ, J_{nr}, etc.


Point vs. shape

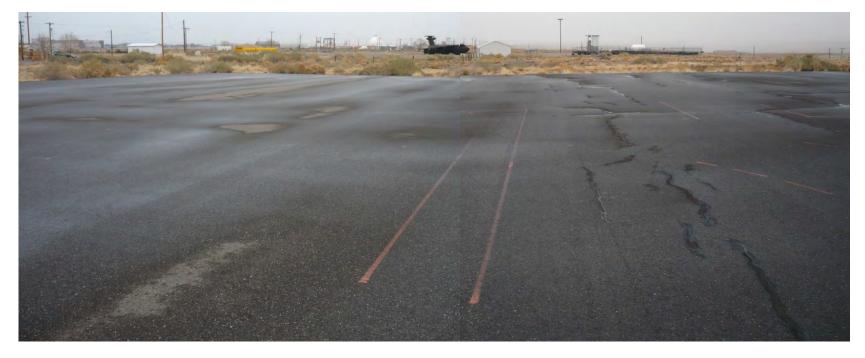
 Need to consider what is defined as a point property versus a parameter that defines a shape of the master curve or part of the master curve

Point versus shape

- Will not necessarily correlate since they are defining different parameters
- Initial relationship shown for ΔT_c versus G-R does not apply to many materials
 - Which is a more reliable indicator of performance?
 - In our existing specifications we have not used a shape parameter without a point parameter!

Point	Shape
<u>Rheology</u>	<u>Rheology</u>
S, m, G*.sinδ, G*/sinδ, J _{nr}	R, WLF/Arrhenius, ΔT_c ,
<u>Empirical</u>	A+VTS, etc.
Pen, R&B SP, Frass	<u>Empirical</u>
	PI, PVN, etc.

How do we use all of this


- Helps us to interpret data, test condition, loading configurations, etc.
- Need to assess existing and new methods in rational manner
- Time-temperature dependency can be determined from simplified testing
- Time-temperature is uniformly valid for rheology and ultimate properties

A couple of thoughts on analysis

- We have more data in data sets than we use
 - R-value captured in all SHRP data
 - Many ways we can estimate
- Extrapolation vs. interpolation
- Specification parameters property driven will they be the same in different climates?
- Rate of loading effects....
 - Consideration of stiffness helps us to understand tests
- We don't test our binders in a "non-thermo dynamic equilibrium" condition
 - Do we need longer conditioning times as proposed in Canada
- What is the correct aging condition?
 - Work ongoing on this aspect!

The mix matters!

• Paved 2 hours apart! LHS \rightarrow OK, RHS \rightarrow durability cracking

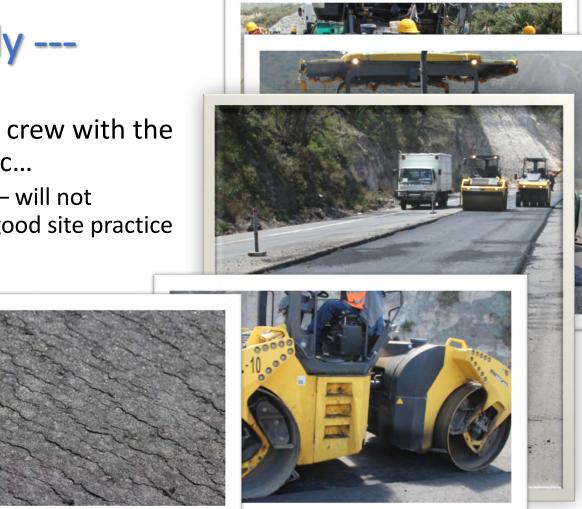
... many tests being considered for the mixture!

• Bending beam fatigue test



- Tensile tests
 - Use of beam, direct or indirect tension

• Fracture tests


Direct compact tension test

... and finally ----

- Don't forget the crew with the paver, rollers, etc...
 - A good binder will not substitute for good site practice

Summary

- In the development of tests and concepts for cracking we should consider
 - That cracking is within region of binder stiffness than can be characterized by LVE – brittle to ductile (instability flow) transition
 - Stiffness can be used as a normalizing parameter to assess quality of products
 - A "ultimate property" master curve exists for our materials
 - For a given material a pass fail criteria can be developed in a Black space plot
 - This failure criteria may vary with modifiers or may need some adjustment
 - Important to consider what are point vs. shape parameters in specifications
 - Durability cracking/environmental stress cracking
 - $\Delta T_c \ge -5^{\circ}C$
 - G-R \leq 600 kPa

Thankyou for listening Comments/Questions??