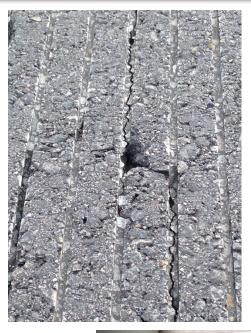


NEAUPG Annual Meeting
October 21st and 22nd, 2015
Burlington, VT

Acknowledgements

- Rutgers Staff
 - Chris Ericson, M.S.
 - Darius Pezeshki, M.S.
 - Ed Haas, M.S.
 - Rostyslav Shamborovskyy
 - Ed Wass Jr.
- PANYNJ
 - Casimir Bognacki, Chief of Materials Bureau
 - John Tetar, Asphalt Laboratory Manager

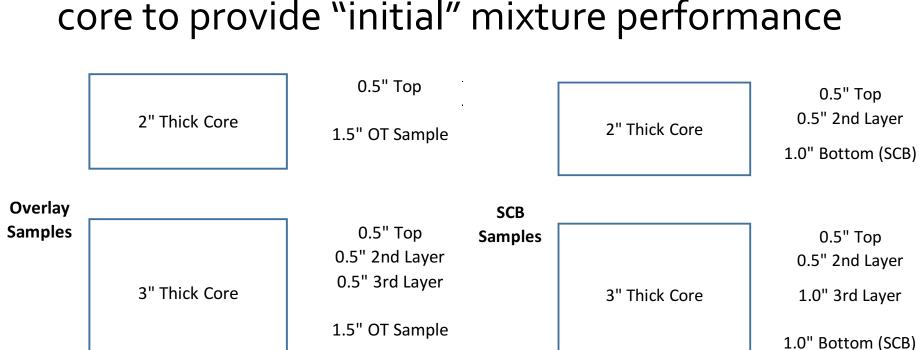

Objective of Study

- Evaluate different runway P401 mixtures for their respective fatigue cracking performance
 - 5 different mixes
 - Different asphalt binders
 - Different field performance
 - 15 years performing well
 - 6 years performing poorly
- "Fatigue" asphalt binder testing
- Mixture fatigue cracking tests
- Ultimately can we find a binder parameter for purchase specification and mixture specification for Quality Control to promote durable asphalt mixtures

Field Observations

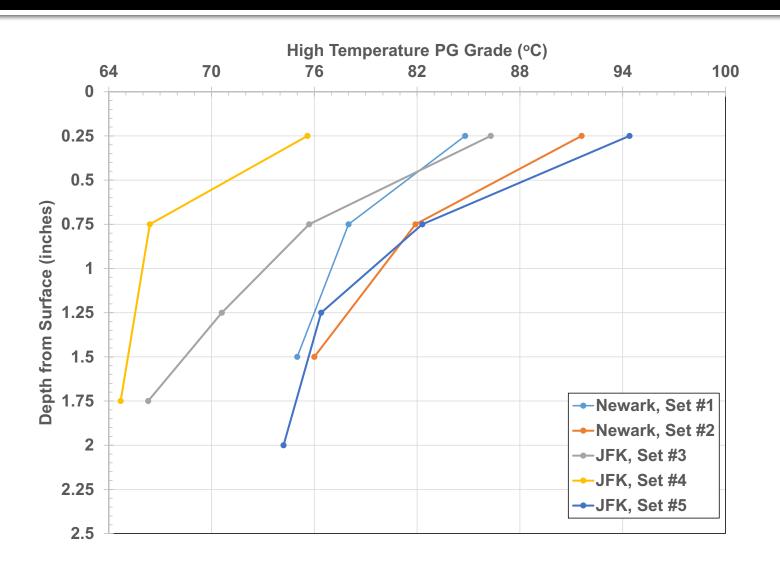
- Longitudinal and transverse cracking observed
- Cracking top-down
 - Stops approximately

 o.5 to o.75 inches below
 surface

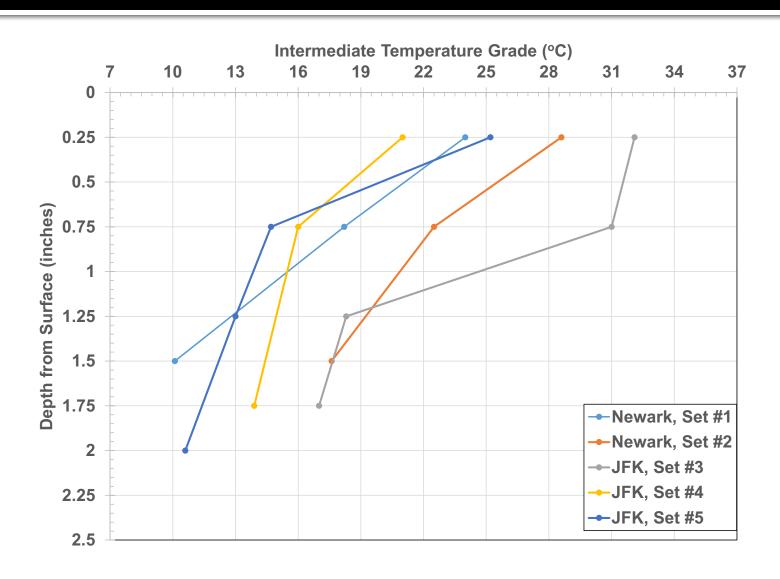

Newark & JFK Runway Fatigue Cracking

Runway	Core Location	Core	Mix Type	Binder Type	Supplier	Visual Observations	Aggregate Type	Date Placed (Age)	# of Cores
numuy	3010 1000	Thickness	mix 17pc	Dillider Type	ouppiic.	Tioual Guodivations	7.881.08410 1960	2 ato 1 latea (7.80)	01 00100
EWR 11-29	Station 38+84, Offset 16	2 inches	FAA #3	PG64-22 + 7%	Mt. Hope, Tilcon B	Not performing well;	Gneiss	9/20/2008	11 (1 cracked)
(Core Set 1)	ft, Right of Centerline	2 ilicites	CHA #3	Vestoplast	Plant	Excessive cracking	GHEISS	(6 Yrs, 9 Months)	II (I CI dCKed)
EWR 11-29	Station 5+99, Offset 63 ft,	2 inches	FAA #3	PG64-22 + 7%	Mt. Hope, Tilcon B	Not performing well;	Gneiss	8/9/2008 (6 Yrs, 10	11 (1 cracked)
(Core Set 2)	Right of Centerline	2 inches	C# AA1	Vestoplast	Plant	Excessive cracking	Gileiss	Months)	II (I cracked)
JFK 4R-22L	Station 39+50, Offset 50	3 inches	FAA #3	PG76-22	Willets Pt Asphalt,	Performing well; No	Trap Rock (from	9/5/2002 (12 Yrs, 9	10
(Core Set 3)	ft, Right of Centerline	3 IIICHES	FAA #3 PG/	1 AA #3	Flushing, NY	cracking	Tilcon, Haverstraw)	Months)	10
JFK 4L-22R	Station -12+87, Offset 5	3 inches	FAA #3	PG76-28	Willets Pt Asphalt,	Performing well; Very few	Trap Rock (from	6/4/2000 (15 Yrs)	10
(Core Set 4)	ft, Left of Centerline	3 IIICHES	C# AA1	PG/0-20	Flushing, NY	cracks	Tilcon, Haverstraw)	0/4/2000 (13 113)	10
JFK 4L-22R	Station -10+18, Offset 27	3 inches	FAA #3	PG76-28	Mt. Hope Rock	Performing well; some	Gneiss	6/4/2000 (15 Yrs)	10
(Core Set 5)	ft, Right of Centerline	5 miches	FAA #3	PU/0-28	Products, Flushing NY	cracking	dileiss	0/4/2000 (15 115)	10

()		1,									
Runway	Binder Type	Asphalt Content	QC Air Voids	QC VMA	QC VFA	Eff AC by Vol (%)	Flow	#200	#200/Eff AC by Vol	Visual Observations	Date Placed (Age)
EWR 11-29 (Core Set 1)	PG64-22 + 7% Vestoplast	5.37	3.4	15.8	78.8	12.4	11.8	4.5	0.36	Not performing well; Excessive cracking	9/20/2008 (6 Yrs, 9 Months)
EWR 11-29 (Core Set 2)	PG64-22 + 7% Vestoplast	5.3	3.5	15.9	77.9	12.4	11	3.9	0.31	Not performing well; Excessive cracking	8/9/2008 (6 Yrs, 10 Months)
JFK 4R-22L (Core Set 3)	PG76-22	5.14	4.9	17	71.1	12.1	13.8	4.4	0.36	Performing well; No cracking	9/5/2002 (12 Yrs, 9 Months)
JFK 4L-22R (Core Set 4)	PG76-28	5.02	4.6	17	72.9	12.4	13.3	4.8	0.39	Performing well; Very few cracks	6/4/2000 (15 Yrs)
JFK 4L-22R (Core Set 5)	PG76-28	5.05	4.6	16.4	72	11.8	14.5	3.7	0.31	Performing well; some cracking	6/4/2000 (15 Yrs)

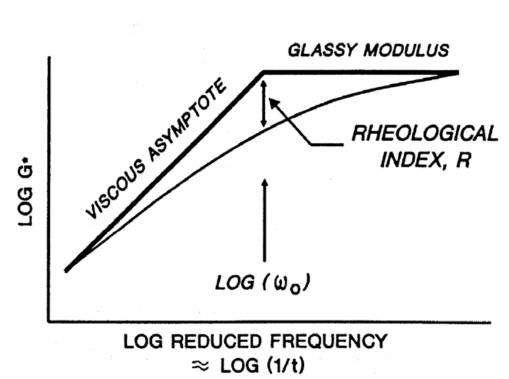

Binder and Mixture Sampling from Field Cores – Approximate Dimensions

- Asphalt binder testing conducted every 0.5" to evaluate change in binder properties due to aging
- Asphalt mixture testing conducted at bottom of core to provide "initial" mixture performance

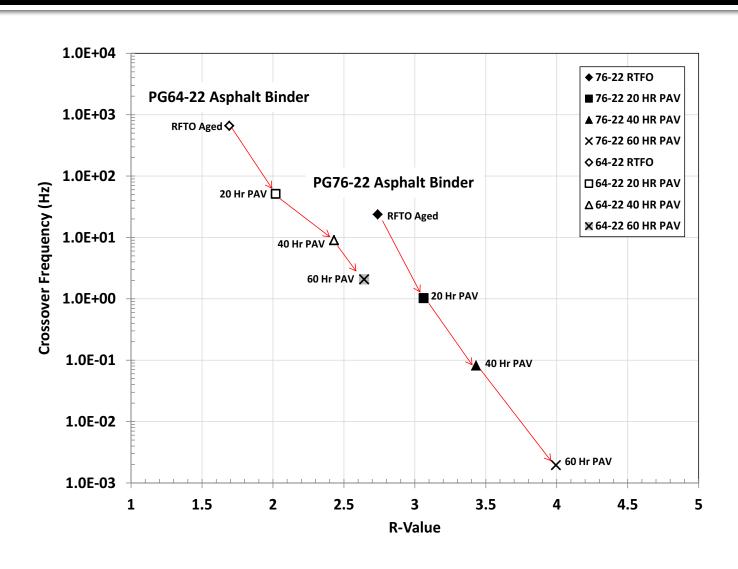


Asphalt Binder Testing & Results

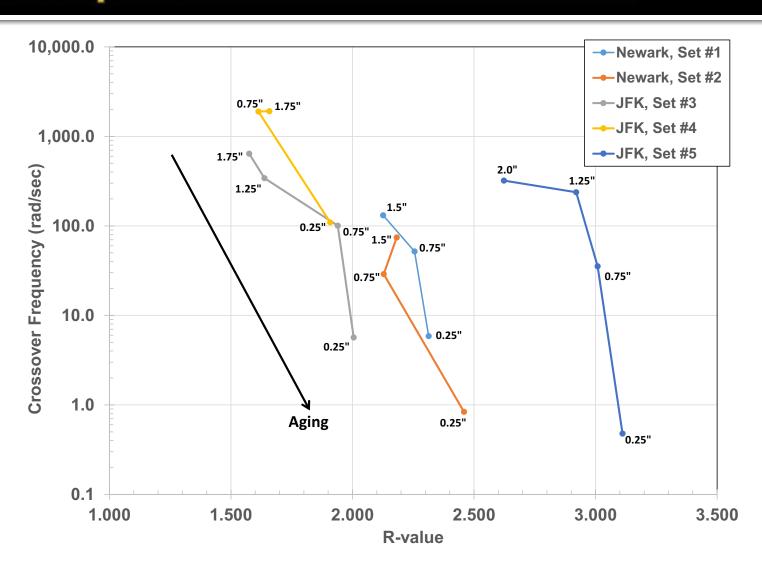
High Temperature PG Grade



Intermediate Temperature PG Grade

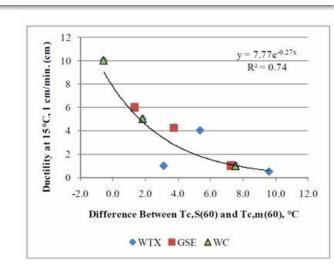


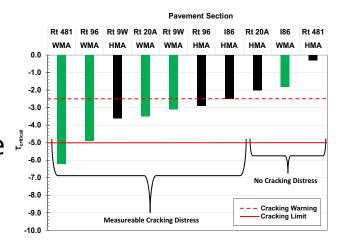
Master Stiffness (G*) Curves - Form of Master Curve (Christensen & Anderson, 2001)


- Master Stiffness (G*)
 curves generated
 using frequency
 sweep in the DSR
- Shape of master curve related to overall stiffness of the asphat binder
- As binders age, increase in stiffening

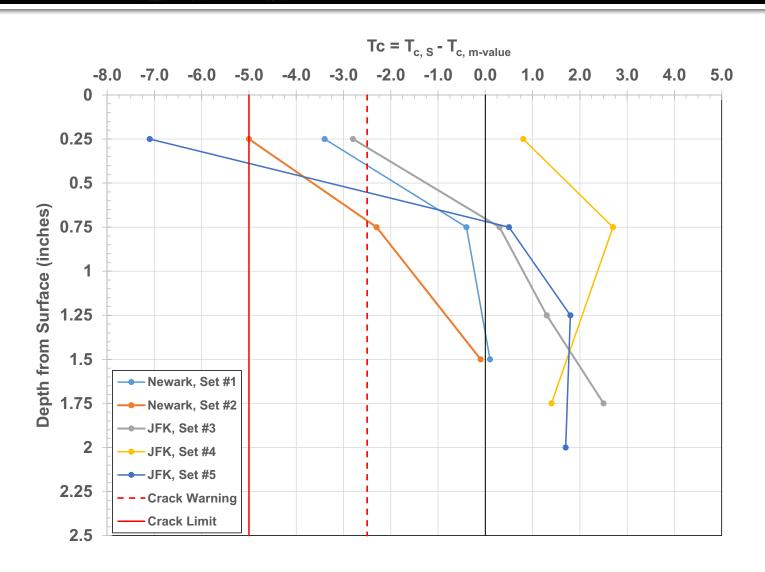
PG64-22 & PG76-22 in ω_o & R-value Space

Cross-over Frequency (ω_o) – R-value Space



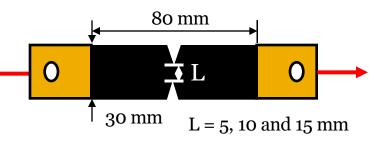

ΔT_c from BBR Testing

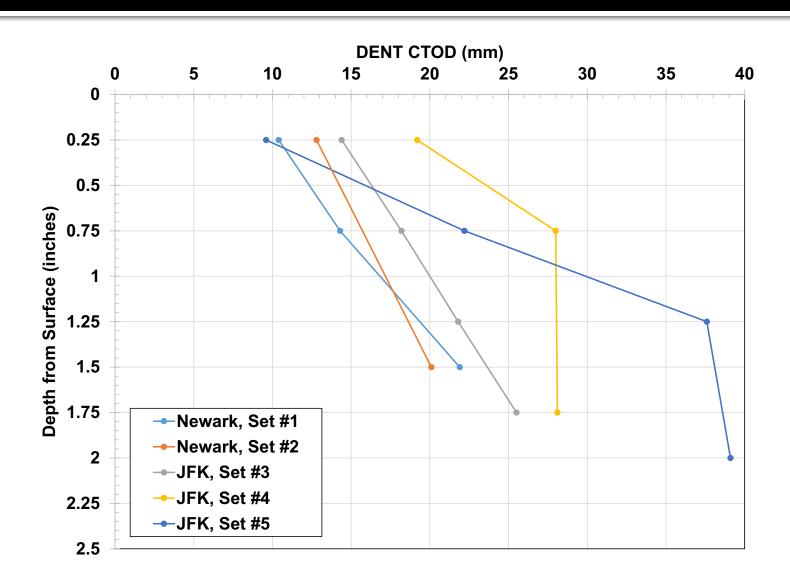
- Ductility has always been correlated to fatigue performance of asphalt mixtures and clearly decreases with aging
- As asphalt binders age, the relaxation properties (m-value) are negatively affected at greater rate than the stiffness (S)
- The difference between the low temperature cracking grade of m-value and S is defined as the ΔT_{c}


$$\Delta T_c = T_{c, S} - T_{c, m-value}$$

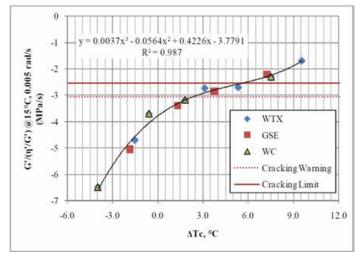
AAPT (Anderson et al., 2011) showed that the ΔT_c correlated to non-load associated cracking on airfields (i.e. – cracking mainly due to aging), as well as ductility

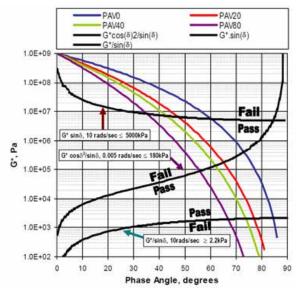


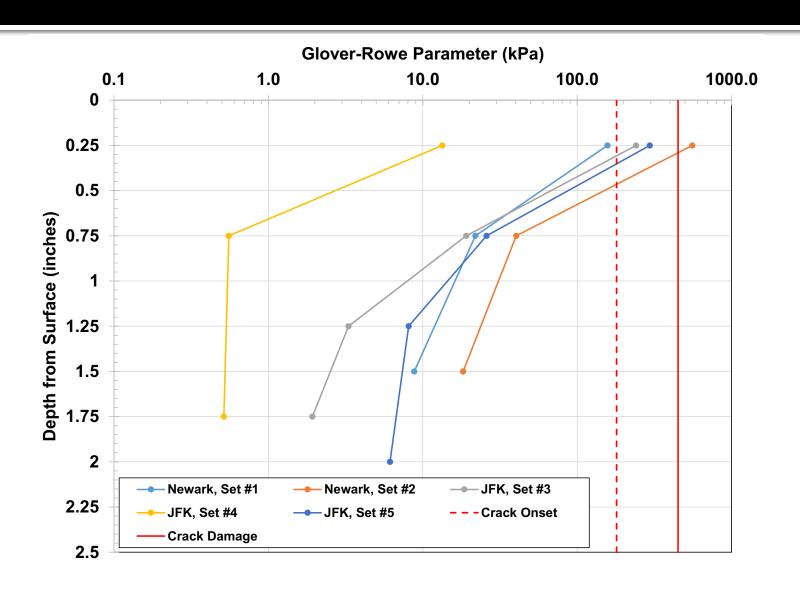

Change in Low Temperature Critical Cracking (ΔT_c)


Double Edge Notched Tension (DENT) Test – AASHTO TP113

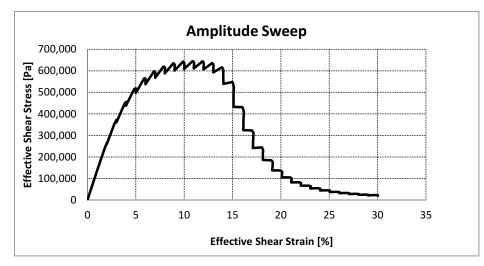
- Test evaluates the energy required for fracturing ductile materials
 - Test measures the Work of Fracture and Critical Opening Displacement (CTOD)
 - CTOD represents ultimate elongation, or strain tolerance, in the vicinity of a crack (i.e. – notch)
 - As CTOD increases, more resistant to fracturing
- Test has been found to correlate well to field cracking performance at FHWA ALF, as well as laboratory studies at Rutgers U. and TTI

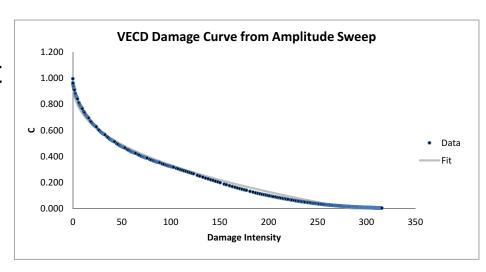


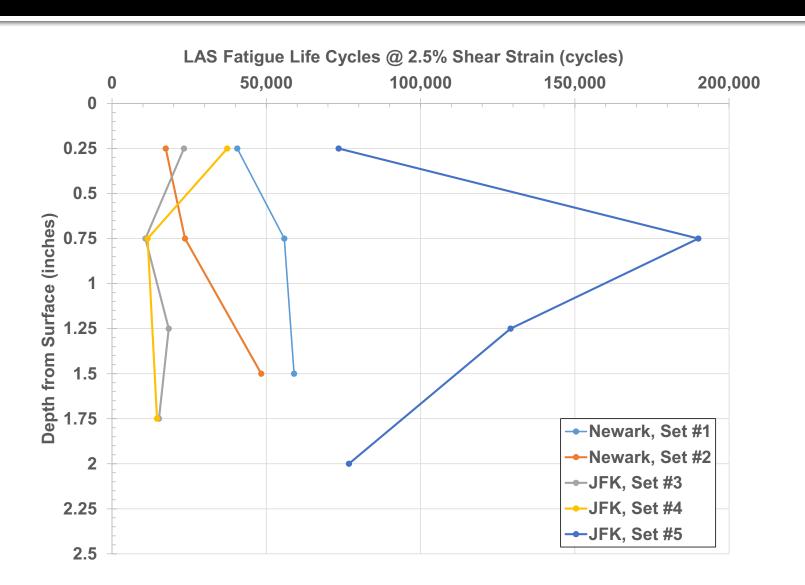

Double Edge Notched Tension (DENT) Test – AASHTO TP113 (20°C)


Glover-Rowe Parameter (G-R)

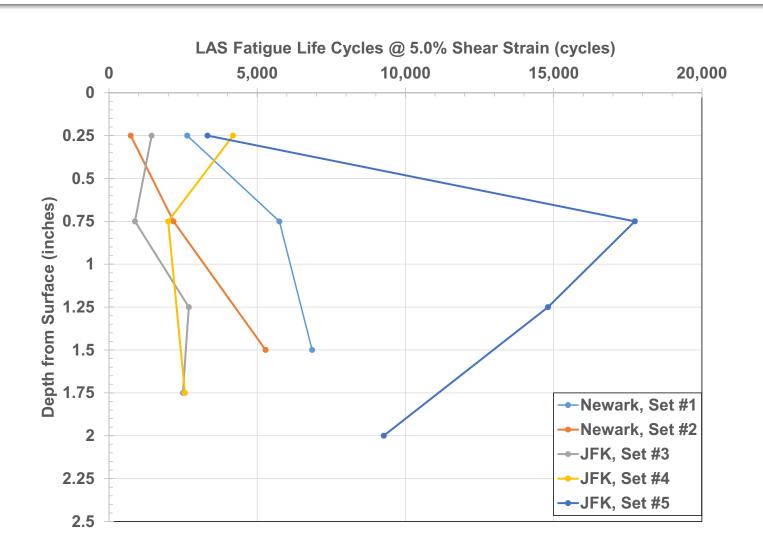
- Due to equipment and material size restraints, Ductility testing may not be available
- Rowe (AAPT, 2011) proposed the DSR master curve analysis to calculate the "Glover-Rowe" parameter
 - As G-R parameter increases, the binder is more prone to fatigue cracking
 - Correlates to both ductility and BBR ΔTc
- Laboratory testing at Rutgers U. has shown the parameter correlates to lab fatigue performance




Glover-Rowe Parameter (G-R)


Linear Amplitude Sweep (LAS) – AASHTO TP101

- Utilizes cyclic testing in the DSR to evaluate the undamaged and damaged condition of asphalt binders under increased accelerated damage.
- Analysis allows for the determination of asphalt binder fatigue life (cycles) at different shear strain levels
- Comparison to FHWA-ALF and LTPP sections show relatively well correlations



Linear Amplitude Sweep @ 2.5% Shear Strain

Linear Amplitude Sweep @ 5% Shear Strain

Binder "Fatigue" Test - Ranking of Core Sets

0.25" Depth	Tcr	CTOD	Glover-	Average	
0.23 Deptil	TCI	(mm)	Rowe	Averuge	
Newark, Set #1	3	4	2	3.0	
Newark, Set #2	4	3	5	4.0	
JFK, Set #3	2	2	3	2.3	
JFK, Set #4	1	1	1	1.0	
JFK, Set #5	5	5	4	4.7	

0.75" Depth	Tcr	CTOD (mm)	Glover- Rowe	Average
Newark, Set #1	4	5	3	4.0
Newark, Set #2	5	4	5	4.7
JFK, Set #3	3	3	2	2.7
JFK, Set #4	1	1	1	1.0
JFK, Set #5	2	2	4	2.7

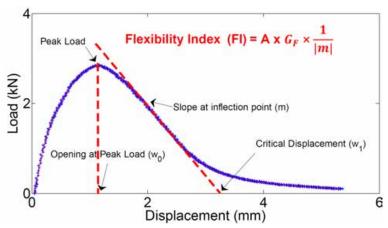
1.5" Depth	Tcr	CTOD (mm)	Glover- Rowe	Average
Newark, Set #1	4	4	4	4.0
Newark, Set #2	5	5	5	5.0
JFK, Set #3	1	3	2	2.0
JFK, Set #4	3	2	1	2.0
JFK, Set #5	2	1	3	2.0

Runway	Binder Type	Visual Observations	Date Placed (Age)
EWR 11-29 (Core Set 1)	PG64-22 + 7%	Not performing well;	9/20/2008
EWK 11-29 (Core Set 1)	Vestoplast	Excessive cracking	(6 Yrs, 9 Months)
EMP 11 20 (Core Set 2)	PG64-22 + 7%	Not performing well;	8/9/2008
EWR 11-29 (Core Set 2)	Vestoplast	Excessive cracking	(6 Yrs, 10 Months)
IEK 4D 221 (Core Set 2)	PG76-22	Donforming wall. No availing	9/5/2002
JFK 4R-22L (Core Set 3)	PG/6-22	Performing well; No cracking	(12 Yrs, 9 Months)
JFK 4L-22R (Core Set 4)	PG76-28	Performing well; Very few cracks	6/4/2000 (15 Yrs)
JFK 4L-22R (Core Set 5)	PG76-28	Performing well; some cracking	6/4/2000 (15 Yrs)

Summary of Binder "Fatigue" Testing

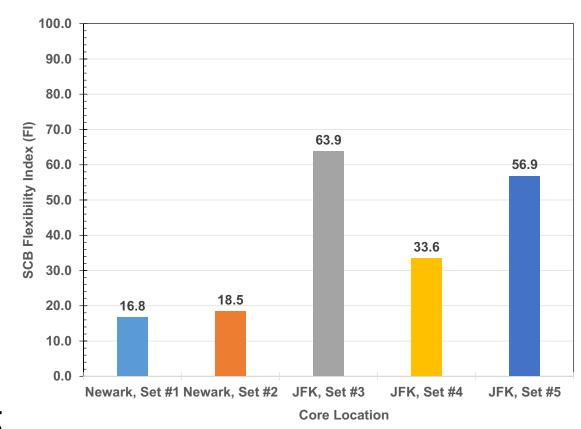
- Both the BBR ΔT_{ζ} and DENT CTOD properties correlated to field observations
 - Glover-Rowe provided reasonable comparisons
 - Intermediate PG grade & LAS conflicted to field observations
- "Fatigue" properties of recovered asphalt binder improved with depth
 - At depths > 0.75 inches, appears to be little aging
 - Would change based on in-situ air voids these mixtures all placed at air voids < 6.5%
- Could bottom portion of 1.5 to 2 inch core be used to develop laboratory to field binder and mixture aging protocols?

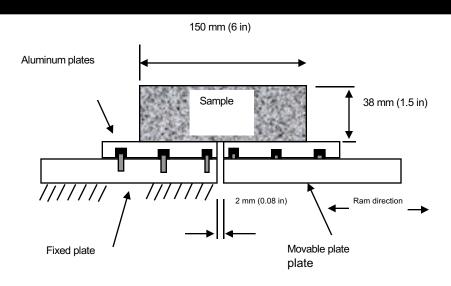
Asphalt Mixture Testing & Results


Asphalt Mixture Testing

- Two fatigue tests conducted on recovered cores
 - Semi-circular Bend (SCB) Test (AASHTO TP105)
 - Overlay Tester (NJDOT B-10; TxDOT TEX-248F)
- Tests chosen based on personal experience and performance correlations in the literature
- Tests also allow thin specimens to be used, which is ideal for either laboratory compacted specimens or field cores
- Test specimens taken away from surface (> 0.75 inches from surface) to obtain asphalt materials that represented close to "original" placement
 - Can the mixture tests predict the resultant field performance?

Semi-circular Bend (SCB) Test

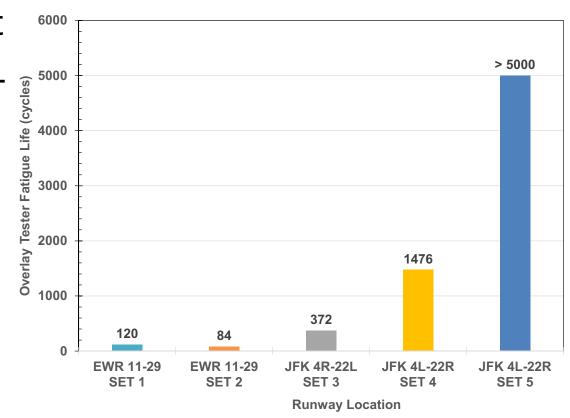

- Uses 3-point bending on a semi-circular asphalt sample
- Can use same equipment at AASHTO T283 (50 mm/min)
- Notch cut to initiate cracking
- Test evaluates the energy required to fracture the specimen and propagate a crack at the notch
 - Work of Fracture
- Additional analysis was used to calculate the Flexibility Index (FI)



Semi-circular Bend (SCB) Flexibility Index (FI)

- Flexibility Index (FI) shows that Newark Sets #1 and #2 have the worst fatigue resistance
- JFK Set #3 should have best fatigue performance, followed by Set #5 and Set #4

Overlay Tester



- Sample size: 6" long by 3" wide by 1.5" high
- Loading: Continuously triangular displacement 5 sec loading and 5 sec unloading
- Definition of failure
 - Discontinuity in Load vs
 Displacement curve

Overlay Tester

- Overlay Tester
 results indicate that
 Newark Core Set #1
 and #2 should
 perform the worst.
- JFK Set #5 should have the best fatigue performance, followed by JFK Set #4 and Set #3.

Mixture Ranking of Core Sets

Core Set	SCB Flexibility Index	Overlay Tester	Average
Newark, Set #1	5	4	4.5
Newark, Set #2	4	5	4.5
JFK, Set #3	1	3	2.0
JFK, Set #4	3	2	2.5
JFK, Set #5	2	1	1.5

Runway Binder Type Visual Observations		Date Placed (Age)		
EWR 11-29 (Core Set 1)	PG64-22 + 7%	Not performing well;	9/20/2008	
EVVR 11-29 (Core Set 1)	Vestoplast	Excessive cracking	(6 Yrs, 9 Months)	
EWR 11-29 (Core Set 2)	PG64-22 + 7%	Not performing well;	8/9/2008	
EVVK 11-29 (Core Set 2)	Vestoplast	Excessive cracking	(6 Yrs, 10 Months)	
JFK 4R-22L (Core Set 3)	DC7C 22	Performing well; No cracking	9/5/2002	
JFK 4K-22L (Core Set 3)	PG76-22	Performing wen; No cracking	(12 Yrs, 9 Months)	
JFK 4L-22R (Core Set 4)	PG76-28	Performing well; Very few	6/4/2000 (15 Yrs)	
JIK 42 ZZK (COIC SCC 4)	1 070 20	cracks	0/4/2000 (13 113)	
JFK 4L-22R (Core Set 5)	PG76-28	Performing well; some	6/4/2000 (15 Yrs)	
JIN 42 ZZN (Core Set 3)	1 370-20	cracking	0/4/2000 (15 113)	

Conclusions

Asphalt Binder

- The ΔT_c from the BBR and the DENT CTOD tests appeared to correlate the best to field observations of cracking. Glover-Rowe also showed promise.
- Results from 0.75" depth and deeper resulted in better correlation to field performance
 - De-icing materials, fuel/oil contamination, residual rubber from tires, etc.
- Asphalt Mixture
 - Both the SCB and the Overlay Tester fatigue cracking performance matched the field performance

Conclusions - continued

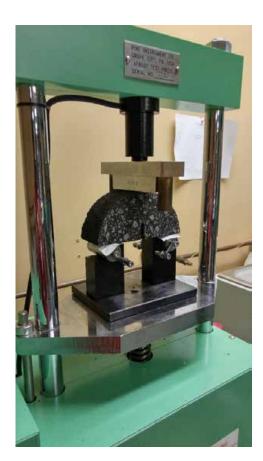
- Potential Implementation
 - ΔT_c from the BBR and the DENT CTOD tests can be used as a PG+ specification (specification in addition to current specs) to help insure durability in asphalt binder
 - Need to determine at what aging condition for binder RECOMMENDED
 - 20 Hr PAV may not be enough
 - 40 Hr PAV proposed by some
 - Mixture testing (SCB or Overlay Tester) can be used post-production to ensure the mixture is properly being produced
 - SCB can be run on current asphalt plant equipment using Marshall Compression machine and modified loading head

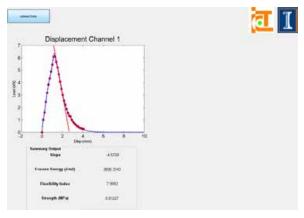
Potential SCB Plant Implementation – Sample Trimming

(3)

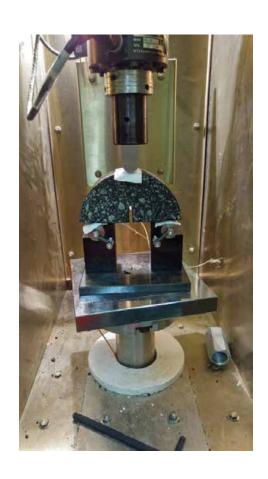
(1)

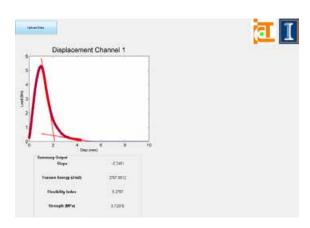
Potential SCB Plant Implementation – Cutting Notch

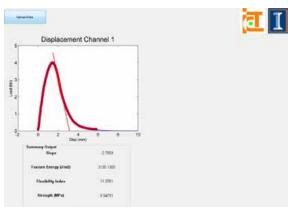




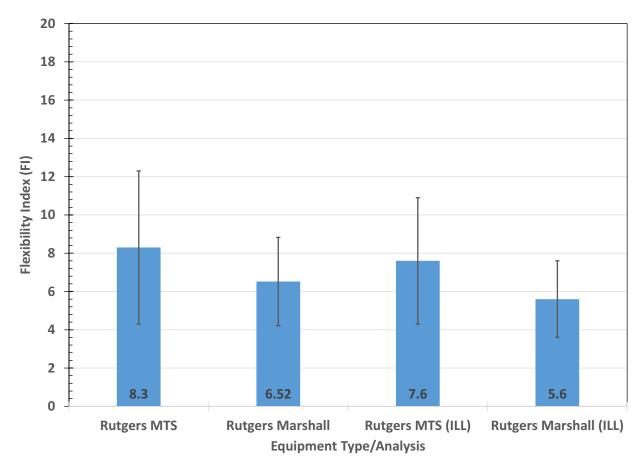
Potential SCB Implementation – Marshall Press







Potential SCB Implementation – Rutgers MTS



Comparison of Rutgers MTS & Marshall Press

Potential SCB Implementation - Needs

- Wet saw for preparing samples
- 3 point loading fixture
- Rounded loading head for line load (modified Lottman too wide)
- Conditioning test specimens tests conducted at 25°C and used environmental chamber
 - QC lab could use a water bath and place specimen in sealed, plastic bag
- Questions to be answered:
 - Criteria what is pass/fail?
 - Study's field cores would indicate Flexibility Index > 20 ~ 25
 - What type of test specimen? QC sample? Compacted to target air voids?
 - Should test specimens be long-term aged?

