

UTILIZING SHRP2 RENEWAL 26 TECHNOLOGIES:

Preservation Approaches for High Traffic Volume Roadways in the Northeast

Northeast Asphalt User Producer Group Meeting October 19th, 2016 • Newark, Delaware

Professor Walaa S. Mogawer, P.E., F.ASCE
Professor of Civil & Environmental Engineering
Director - Highway Sustainability Research Center
University of Massachusetts Dartmouth

Research Team

Name	Institute
Walaa S. Mogawer	University of Massachusetts
Ed Naras	MassDOT
Alexander J. Austerman	University of Massachusetts
Siavash Aval	University of Massachusetts

Strategic Highway Research Program 2 (SHRP2)

- Congress authorized SHRP2 under SAFETEA-LU
 - > Follow-up to previous SHRP (1987)
- > Four (4) Broad Areas of Emphasis
 - Highway Safety
 - 2. Renewal
 - 3. Reliability
 - 4. Capacity

Strategic Highway Research Program 2 (SHRP2)

> Renewal Focus Area

"Develop design and construction methods that cause minimal disruption to the traveling public and produce long-lived facilities to renew the aging highway infrastructure"

> Product Addresses

Bridges, nondestructive testing techniques, pavements, project delivery, utilities, and railroads

Strategic Highway Research Program 2 (SHRP2) Renewal 26

R26 - Preservation Approaches for High Traffic Volume Roadways

- Assessed state-of-practice through survey and literature review
- Outlined factors influencing treatment selection (Performance & Construction)
- Outlined treatment selection process (matrices, etc.)

SHRP2 R26

Pavement Preservation For High Volume Roadways

- HMA Pavement Preservation Treatments
 - Crack Filling
 - Crack Sealing
 - Microsurfacing
 - Chip Seals
 - Ultra-thin Bonded Wearing Course (UTBO) x3
 - Thin HMA Overlay
 - Cold milling and overlay
 - Ultrathin HMA Overlay
 - Hot In Place HMA recycling
 - Cold In Place HMA recycling
 - Profile Milling
 - Ultra-thin Whitetopping

SHRP2 R26

Pavement Preservation For High Volume Roadways

Definition of UTBO

"Also known as an ultra-thin friction course, an ultra-thin bonded wearing course may be used as an alternative treatment to chip seals, microsurfacing, or thin HMA overlays. It consists of a gap-graded, polymer modified HMA layer (0.4 to 0.8 inch thick) placed on a tack coat (heavy, polymer-modified emulsified asphalt). It is effective at treating minor surface distresses and increasing surface friction."

Treatment Selection Matrix

Treatment	Treatment
Code	Name
A_C_S	Asphalt Crack Seal
ARS	Asphalt Route and Seal
M S	Micro-surfacing
o	Rubber Chip Seal
PPST	Paver Placed Surface Treatment
THIN	1-1/4 THIVIA OVEHAY
A_R_G_G_O	Asphalt Rubber Gap Graded Overlay
OGFCW	OGFC w/leveling
OGFCDB	OGFC w/ 2" dense binder
FUNCC	Functional Overlay with Saw and Seal
THICKC	Thick Overlay with Saw and Seal
FUNCA	Functional Overlay (mill 2" overlay 2")
STRUC	Structural Overlay (mill 2" overlay 4")
RECL	Full Depth Reclamation
RECN	Reconstruction -

Index	Alligator									Longitudinal				Raveling			Rough		Rutting		
Value	ALIG_1	ALIG_2	ALIG_3	ALIG_3	TDAN 1	TRAN 2	TRAN_3	TRAN_4	TRAN_5	LONG_1	LONG_2	LONG_3	LONG_3	RAVL_1	RAVL_2	RAVL_3	RUFF_1	RUFF_2	RUT_1	RUT 2	DIT 3
5																					
4.9																					
4.8																					
4.7																					
4.6 4.5																					
4.5																					
4.4																					
4.3																					
4.1																					
4					ACS /	P_P_S_T	RGGO	OGFCW		ACS	OGFCW	ARGGO									
3.9						PPST	ARGGO	OGFCW		A C S	OGFCW	ARGGO									
3.8						PPST	A GGO	OGFCW		ACS	OGFCW	ARGGO									
3.7	ACS	ARGGO			A C S	PPST	AFGGO	OGFCW		ACS	OGFCW	ARGGO									
3.6	A_C_S	ARGGO			A_C_S	P_P_S_T	A G G O	OGFCW		A_C_S	OGFCW	ARGGO									
3.5	A_C_S	ARGGO				PPST	A G G O			A_C_S	OGFCW	ARGGO									
3.4	A_C_S	ARGGO			A C S		PRGG0	OGFCW		100	OGFCW	ARGGO									
3.3	A_C_S	A_R_G_G_O			A_C_S	PPST	ARGGO	OGFCW		A_C_S		ARGG0									
3.2	OGFCDB	<u> </u>		FUNCC	A_R_S	OGrand	FUNCA	FUNCC		PPST		ARGGO									
3.1	OGFCDB	<u> </u>		FUNCC	A_R_S	OGFCDB	FUNCA	FUNCC		PPST		ARGGO									
3	OGFCDB	ARGGO		FUNCC	A_R_S	OGFCDB	FUNCA	FUNCC	_	PPST		ARGG0		M_S			M_S				
2.9	OGFCDB	ARGGO		FUNCC	A_R_S	OGFCDB	FUNCA	FUNCC		PPST		ARGGO		M_S			M_S				
2.8	OGECUB	ARGGO		FUNCC	A R S	OGECDB	FUNCA	FUNCC		PPST	GECUB	ARGGO		M_S			M_S		4 5 6 6 6	0.05011	
2.7	OGECDB	ARGGO		FUNCC	A R S	OGECDB	FUNCA FUNCA	FUNCC		FUNCA	OGECOR	FUNCC		M S			M S		ARGGO		
2.5	OCECDE	A R G G O A R G G O		FUNCC FUNCC	ARS ARS	OCECDB	FUNCA	FUNCC FUNCC		FUNCA	OCECDE	FUNCC FUNCC	-	P_P_S_T	AFCW	ARGG	<mark>// S</mark> P P S T	SFCW	A_R_G_G_O OGFCW	OGFCW OGFCW	
2.4	OGFUDD	A K G G O	FUNCA	FUNCC	ARS	OGECDB	FUNCA	FUNCC		FUNCA	STRUC	FUNCC	THICKC	PPST	OL FCW		PPST	O FCW	OGFCW	OGFCW	
2.4			FUNCA	FUNCC	DECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC	PPST	OG CW		PPST	O FCW	OGECOR	OGFCW	
2.2			FUNCA	FUNCC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC	PPST	OC CW		ARGGO	Ø ÆCDB	OGECOR	OGFCW	
2.1			FUNCA	FUNCC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC	PPST	O/ FCW	ARGGO	\ R G G O	GECDB	OGFCDB	FUNCA	FUNCC
2			FUNCA	FUNCC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC				A R U U O	OGFCDB	RECN	FUNCA	FUNCC
1.9			FUNCA	FUNCC	RECN	STRUC		FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC		OGFCDB	ARGGO		OGFCDB		FUNCA	FUNCC
1.8			FUNCA	FUNCC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC		OGFCDB	ARGGO		FUNCC		FUNCA	FUNCC
1.7			STRUC	THICKC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC		OGFCDB	ARGGO	FUNCA	FUNCC		FUNCA	FUNCC
1.6			STRUC	THICKC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC		OGFCDB	ARGGO		FUNCC		FUNCA	FUNCC
1.5			STRUC	THICKC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC		OGFCDB	ARGGO		FUNCC		FUNCA	FUNCC
1.4			STRUC	THICKC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC		OGFCDB	ARGGO		FUNCC		STRUC	THICKC
1.3			STRUC	THICKC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC	ļ	FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
1.2			STRUC	THICKC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC	ļ	FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
1.1	DEAL		STRUC	THICKC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC	-	FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
1	RECN		STRUC	THICKC	RECN	STRUC	FUNCA	FUNCC	THICKC	FUNCA	STRUC	FUNCC	THICKC		FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
0.9	RECN		STRUC	THICKC	RECN	STRUC			THICKC		STRUC	FUNCC	THICKC	-	FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
0.8	REUN		STRUC	THICKC THICKC	RECN DECN	STRUC STRUC			THICKC THICKC		STRUC		THICKC		FUNCC FUNCC	FUNCA FUNCA	FUNCA FUNCA	FUNCC FUNCC		STRUC STRUC	THICKC THICKC
0.7	RECN		STRUC	THICKC	RECN	STRUC			THICKC		STRUC		THICKC		FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
0.6	RECN		STRUC	THICKC	RECN	STRUC			THICKC		STRUC		THICKC		FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
0.4	RECN		STRUC	THICKC	RECN	STRUC			THICKC		STRUC		THICKC		FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
0.4	RECN.		STRUC	THICKC	RECN	STRUC			THICKC		STRUC		THICKC		FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
0.2	RECN		STRUC	THICKC	RECN	STRUC			THICKC		STRUC		THICKC		FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
0.1	RECN		STRUC	THICKC	RECN	STRUC			THICKC		STRUC		THICKC		FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC
0	RECN		STRUC	THICKC	RECN	STRUC			THICKC		STRUC		THICKC		FUNCC	FUNCA	FUNCA	FUNCC		STRUC	THICKC

Project Identified. Route 3 N Burlington-Tyngsboro

- ➤ Location: I-95(Rt 128) to NH State Line
 - 20.6 Centerline Miles
 - 6 Travel Lanes+ Shoulders & Breakdown lanes
 - 1M SY of Mainline
 - 400K SY of Shoulder & Breakdown Lane
 - Route 3N Widening completed approx. 10 years ago.
 - Minor rutting (0.2" average).
- ➤ Ideal Candidate for Pavement Preservation
 - Minor Cracking & Light Surface Raveling

ROUTE 3 NORTH PROJECT

Northeast Asphalt User Producer Group Meeting
Newark, DE ◆ October 19th, 2016

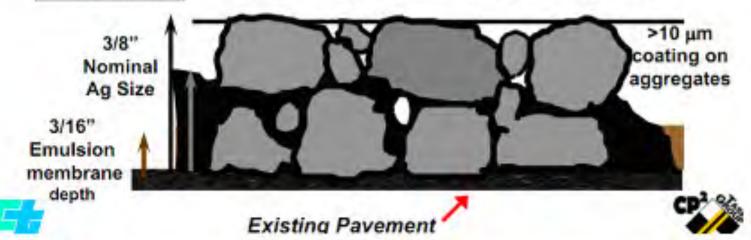
PAVEMENT CONDITION A CLOSER LOOK....

Demonstration Treatments

- Ultrathin Bonded Overlays (UTBO)
 - UTBO with PG 64-28 Binder (Control)
 - UTBO with PG 58-28 Asphalt Rubber Binder (Rec.)
 - UTBO with PG 64V-28 Binder (Polymer Modified)
- ➤ Maltene Rejuvenator Seal (Breakdown Lane)
 - Asphalt fog seals compared to rejuvenating seals
- ➤ Fog Seals (High Speed Shoulder Only)
 - CRS-2 (Unmodified Emulsified Binder)
 - Gilsonite Emulsion
 - CRS-2Pd (Polymer Modified Emulsified Binder)
- > Texture added to breakdown lane & shoulders.
 - Skidabrader and Boiler Slag "aka Black Beauty".

	Wet Re	flective	Recess	sed Then	moplastic (A	II ZB Z	triping)		ROUTE	3	NB			
SEGMENT #3 PAN HAVE STATE WAS HAVE STATE WAS HAVE A STATE OF THE STATE	Fog Seal Maltene & Shot Blasting (Skidabrader)	UTBO Control	UTBO	UTBU	Fog Seal Control & Boiler Slag (Black Beauty)		MEDIAN		Fog Seal Control & Boiler Slag (Black Beauty) Fog Seal Control Shot Blasting (Skidabrader)	UTBU	Urigo Control	UTBU Control	Fog Seal Maltene & Shot Blasting (Skidabrader)	MM 92.190 MA/NH State Line 7.731 MILES MM 84.459
84.448 MM 84.448 MM Stridge Over Rd C'164 Miles MM 77.684	Fog Seal Maltene & Shot Blasting (Skidabrader)	UTBO Asphalt Rubber	UTBO Asphalt Rubber	UTBD Asphalt Rubber	Fog Seal Polymer & Boiler Slag (Black Beauty)		MEDIAN		Fog Seal Polymer & Boiler Slag (Black Beauty) Fog Seal Polymer & Shot Blasting (Skidabrader)	UTBO Asphalt Rubber	UTBO Asphalt Rubber	UTBO Asphalt Rubber	Fog Seal Maltene & Shot Blasting (Skidabrader)	SEGMENT #2 Bridge Over Parkhurst Rd 6,764 Miles
SEGMENT #1 SEGMENT Bridge Over oncord River 9:022 Wiles	Fog Seal Maltene 8 Shot Blasting (Skidabrader)	UTBO Polymer	UTB0 Polymer	UTBO Polymer	Fog Seal Gisonite & Boiler Slag (Black Beauty)		MEDIAN		Fog Seal Gisonite & Boiler Slag (Black Beauty) Fog Seal Gisonite &	UTBO Polymer	UTBD Polymer	UTBD Polymer	Fog Seal Maltene & Shot Blasting (Skidalarader)	MM 77.684 MM 77.645 Bridge Over Concord River # 1 220'9
MM 71.623 Bridge Over Route 128			RE	UTE	3 2B			Wet Re	flective Reces	sed Po	lyurea (AIL NB		MM 71.623 Bridge Over Route 128

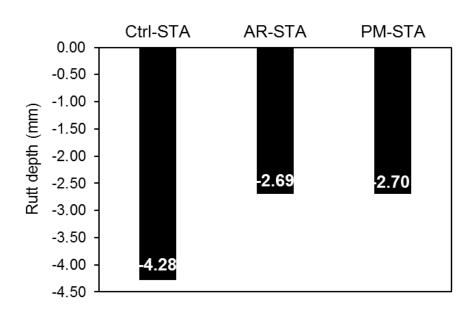
UTBO: "Spray Paver"

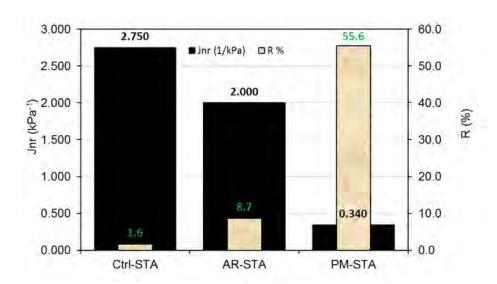


Ultrathin Bonded Overlay

(UTBO)
The emulsion cures,

3/4" Typical Mix Depth The emulsion cures, bonding the mix & pavement



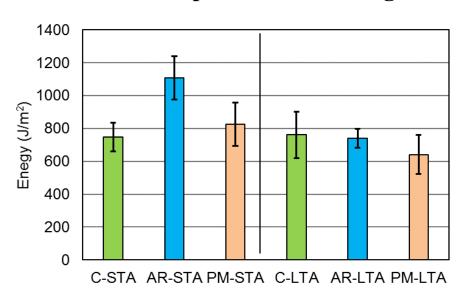


Rutting Resistant

Extracted and Recovered Binders

Hamburg Wheel Track Test at 50° C

Multiple Stress Creep Recovery test at high end PG and 3.2 kPa


Legend:

STA = Short Term Aging
(Aging during Compaction)

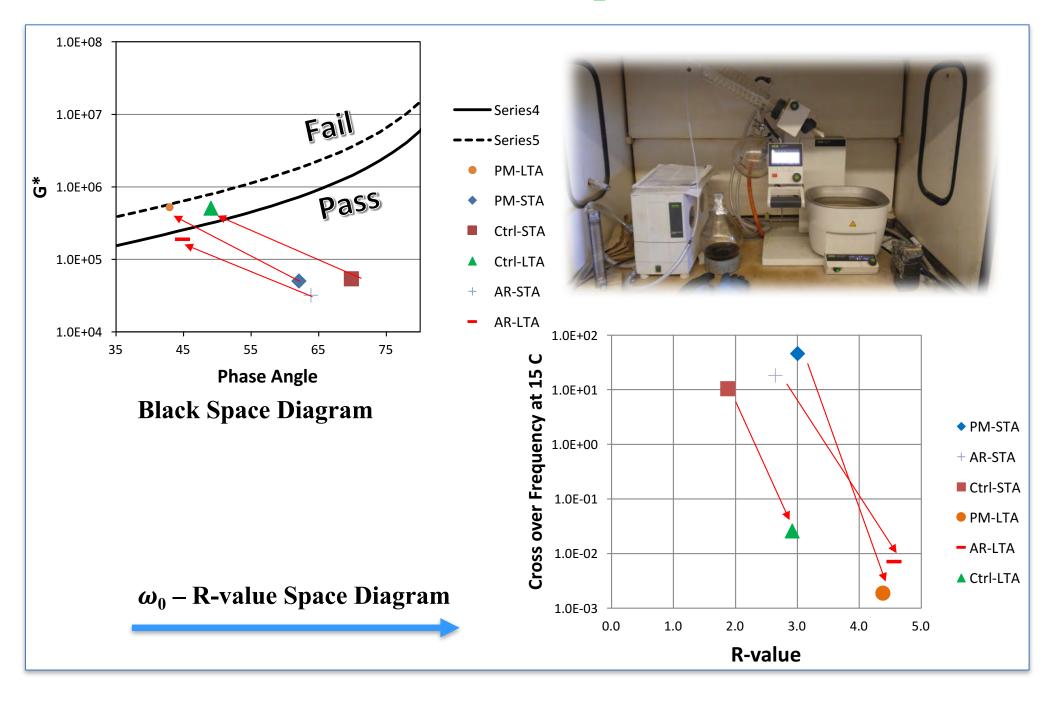
LTA = Long Term Aging
(24 hours aging at 135°C)

Low & Intermediate Temperature Performance

Low Temperature Cracking



Disc Shaped Compact Tension test at -18° C
ASTM D7313


Semicircular Bending test at 25° C AASHTO TP 105

Intermediate Temperature Cracking

Master Cure & Black Space Parameters

Expectations?

- Evaluate the performance of treatments.
- Benefits of polymer modified binders.
- Evaluate the effectiveness of using Fog Seals for Shoulders.
- Ride Quality Expectations for Thin Pavements

Acknowledgements

The research data and results presented were part of a study entitled "MassDOT Implementation of SHRP 2 Technologies: Preservation Approaches for High Traffic Volume Roadways - Product R26" funded by the Massachusetts Department of Transportation.

Thank you!

