

Balanced Mix Design (BMD) Task Force Update FHWA Expert Task Group on Asphalt Mixtures

Time and Resources

DAVE NEWCOMB

Time and Resources

Our Leader

Shane Buchanan, Oldcastle Materials Group

Time and Resources

Task Force Members

Name 🔽	Affilation	Category 🖓	e-mail 🗾 👻		
Dave Newcomb	Texas Transportation Institute	Academia/Research	d-newcomb@ttimail.tamu.edu		
John Haddock	Purdue University	Academia/Research	jhaddock@purdue.edu		
Kevin Hall	University of Arkansas	Academia/Research	kdhall@uark.edu		
Louay Mohammad	y Mohammad Louisiana State University Academia/Research		Louaym@Lsu.edu		
Brian Pfeifer	Illinois DOT Agency		Brian.Pfeifer@illinois.gov		
Bryan Engstrom	van Engstrom Massachusetts DOT Agency		Brian.Pfeifer@illinois.gov		
Charlie Pan	Nevada DOT	Agency	cpan@dot.state.nv.us		
Curt Turgeon	Minnesota DOT	Agency	curt.turgeon@state.mn.us		
Derek Nener-Plante	Maine DOT	Agency	derek.nener-plante@maine.gov		
Eliana Carlson	Connecticut DOT	Agency	Eliana.Carlson@CT.gov		
Howard Anderson	Utah DOT	Agency	handerson@utah.gov		
Oak Metcalfe	Montana DOT	Agency	rmetcalfe@mt.gov		
Robert Lee	Texas DOT	Agency	Robert.Lee@txdot.gov		
Steven Hefel	Wisconsin DOT	Agency	<u>Steven.Hefel@dot.wi.gov</u>		
Frank Fee	Consultant	Consultant	frank.fee@verizon.net		
John D'Angelo	Consultant	Consultant	johndangelo@dangeloconsultingllc.com		
Lee Gallivan	Consultant	Consultant	lee@gallivanconsultinginc.com		
Richard Duval	FHWA - Turner Fairbank	FHWA Agency	Richard.Duval@dot.gov		
Tim Aschenbrener	FHWA - Denver	FHWA Agency	timothy.aschenbrener@dot.gov		
Andrew Hanz	Mathy Construction	Industry	Andrew.Hanz@mteservices.com		
Chris Abadie	Pine Bluff S&G	Industry	abadie3522@icloud.com		
Erv Dukatz	Mathy Construction	Industry	Ervin.Dukatz@mathy.com		
Gerry Huber	Heritage Research	Industry	Gerald.huber@hrglab.com		
Shane Buchanan	Oldcastle Materials	Industry	sbuchanan@oldcastlematerials.com		
Anne Holt	Ontario Ministry of Transportation	Provincial Agency	Anne.Holt@ontario.ca		
Randy West	NCAT	Research	westran@auburn.edu		

- Need for Balanced Mix Design
- Define Balanced Mix Design
- Review FHWA Balanced Mix Design Task Force Efforts
 Current State Agency Practice
 NCHRP Problem Statement Development
 - Technical Brief Development on Balanced Mix Design

ime and Resources

Need for Balanced Mix Design

Time and Resources

Time and History arces

1890	 Barber Asphalt Paving Company Asphalt cement 12 to 15% / Sand 70 to 83% / Pulverized carbonite of lime 	ne 5 to 15%		B
				N
	Clifford Richardson, New York Testing Company			D
1905	•Surface sand mix: 100% passing No. 10, 15% passing No. 200, 9 to 14% asphalt •Asphaltic concrete for lower layers. VMA terminology used, 2,2% more VMA than current day mixes or ~0.9% higher binder content			E
			,	R
	•Hubbard Field Method (Charles Hubbard and Frederick Field)			C
	Sand asphalt design Stability			0
1920s	•30 blow, 6" diameter with compression test (performance) asphaltic concrete design (Modified HF Method)			N
				Т
	•Francis Hveem (Caltrans)			E
1027	• Surface area factors used to determine binder content; Hveem stabilometer and cohesionmeter used Stability + Durability			N
1927	•Air voids not used initially, mixes generally drier relative to others, fatigue cracking an issue			
	•Bruce Marshall, Mississippi Highway Department	ammar	Stability + Durability	
1943	 Refined Hubbard Field method, standard compaction energy with drop nammer Initially, only used air voids and VFA. VMA added in 1962: stability and flow utilized 			0
				W
	• Superpave			
	• Level 1 (volumetric)			
1993	 Level 2 and 3 (performance based, but never implemented) 			
		NEAUPG 2016		
	http://asphaltmagazine.com/history-of-asphalt-mix-design-in-north-america-part-	2/		

Design vs. Optimum

- Design and optimum interchangeable?
 - NOT the same
- Many design binder contents, but only one truly optimum

- Is 4% air voids the right target for every mix?
- Optimum: the best binder content for performance requirements/needs, and ultimately economics
- Goal: Close to optimum

Oldcastle Survey

Oldcastle Survey Question: Within the past 5 years, what type of mix performance related distress has been most evident in your mixes?

~40 companies responding from ~30 states

• Most reported distresses are related to mix durability.

Balanced Mix Design

- Durability related performance issues.
- New materials, new mixes
 - Polymers
 - □ More RAP/RAS
 - Asphalt additives
 - Etc.
- Some states doing "performance testing" during mix design and/or production to ensure performance.
 - □ This is balanced mix design.

Pendulum of Performance

Pendulum of Hot Mix Asphalt Performance

BMD Task Force Goals

Define Balanced Mix Design

- Determine the current "state of practice" of BMD
- Present approaches/concepts for immediate use
- Recommend future needs (potential research) to advance BMD approaches
- Disseminate information

NEAUPG 2016

BMD Task Force Work Items

Completed

- O Definition of Balanced Mix Design
- O Survey of Agency Current Practice
 - Laboratory Balanced Mix Design Protocols
 - Field Acceptance Protocols
- Research Problem Statement (RPS) Submitted to AASHTO)

• Current

- FHWA Technical Brief on Balanced Mix Design
 - Traft prepared, reviewed and being revised

NEAUPG 2016

Balanced Mix Design Definition

Time and Resources

- *"Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure."*
- Basically, it consists of designing the mix for an intended application and service requirement.

Agency Practices Related to BMD

Time and Resources

McCarthy, Callans, Quigley, and Scott, III NCHRP Synthesis No. 492

Agency Approaches

Tim Aschenbrener and Kevin Hall

Verified Vol Design

Performance Mod Vol Design

ime and Resources

BMD Basic Example

Texas DOT

- Volumetric design conducted
- Hamburg Wheel Tracking Test (HWTT) AASHTO T 324
- Overlay Tester (OT) Tex-248-F
- Three asphalt binder contents are used: optimum, optimum +0.5%, and optimum -0.5%.
- The HWTT specimens are short-term conditioned.
- The OT specimens are longterm conditioned.

Balancing Rutting and Cracking Requirements

Within this acceptable range (5.3 to 5.8 percent), the mixture at the selected asphalt content must meet the Superpave volumetric criteria.

NEAUPG 2016

Performance Testing to Understand Mixes

- Performance space diagrams show the performance of a mix related to multiple tests
- Allows the mix designer to visualize the mix performance and how to engineer the mix to provide the desired performance
- Illustrates the impact of varying mix factors on performance.

From: Performance-Space Diagram for the Evaluation of High and Low Temperature Asphalt Mixture Performance, Buttlar et al, AAPT 2016

Need for Production Verification

Optimize

- Local materials use, recycle, additives, cost, appropriate binder content
- • Specific site/end use

Design

Establish

- • Performance criteria
- Potential surrogate test correlation
- Volumetric property baseline

Production

Verify

- ••QC testing
- • Volumetrics
- comparison to baseline
- • Surrogate ("Quick") tests
- ••Performance tests at <u>"x" frequency</u>

BMD TF Work Products

Time and Resources

Research Problem Statement + FHWA Technical Brief

Research Need Statement

- RPS prepared in June 2016
- Anticipated Results
 - 1) review of the state-of-the-practice of mix design
 - 2) review state-of-the-practice for performance testing,
 - 3) develop Recommended Practice for Balanced Mixture Design
 - 4) develop training and implementation plan and materials to move BMD ahead in State Highway Agencies (SHAs).

NCHRP Problem Statement

I. PROBLEM NUMBER

To be assigned by NCHRP staff.

II. PROBLEM TITLE

Development of a Recommended Practice for Balanced Asphalt Mixture Design

III. RESEARCH PROBLEM STATEMENT

Background

In September 2015, the FHWA Expert Task Group on Asphalt Mixture and Construction formed a Task Force on Balanced Mixture Design (BMD) to move forward changes in the way asphalt mixtures are formulated. The task group has defined BMD as "*Asphalt mixture design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mixture aging, traffic, climate and location within the pavement structure.*" The objective of BMD is to design asphalt mixtures for performance using a rational approach instead of relying on strictly volumetric guidelines. The Task Force has identified three types of approaches used for a Balanced Mixture Design: A) Performance Testing, B) Superpave with Adjustments Based on Performance Testing and C) Superpave with Adjustments Based on Volumetrics and Performance Testing.

~1 Million tons of HMA placed each day.

 Critical to address mix design in a more comprehensive manner

Research Need Statement

- Favorable response during August SOM
- Status:
 - Ranked high
 - Decision not to forward to RAC/SCOR
 - Pursuing NCHRP 20-07 Projects
 - More fully develop work items
 - Define state of practice
 - Probably next year before it is forwarded to RAC/SCOR

FHWA Tech Brief - Draft

- Tech Brief prepared and reviewed by full ETG.
- Submitted to FHWA for publication.

TechBrief

The Asphalt Pavement Technology Program is an integrated, national effort to improve the long-term performance and cost effectiveness of asphalt pavements. Managed by the Federal Highway Administration through partnerships with state highway agencies, industry and academia the program's primary goals are to reduce congestion, improve safety, and foster technology innovation. The program as established to

Balanced Mixture Design Approaches for Asphalt Pavement Construction

This *Technical Brief* provides an overview of balanced mixture design (BMD) approaches used by states in asphalt pavement construction. These approaches are still under development and this document will attempt to show its current status and some of the issues that will need to be addressed in the future.

What do We do with This?

Time and Resources

• Key Foundational Points to Keep in Mind

- 1. "Use What Works"
- 2. "Eliminate What Doesn't"
- 3. "Be as Simple as Possible, Be Practical, and Be Correct"

NEAUPG 2016

Time and Resources

Want to know more about ASPHALT? Join AAPT!

www.asphalttechnology.org/membership

At the 2016 AAPT Meeting:

- Leading Edge Workshop: Cracking Tests
- 5 Presentations on Cracking Tests
- Symposium: Balanced Mix Design
- 5 Presentations on High RAP/RAS
- Implementation of Specifications
- Aging Behavior

Forum Topic: World Asphalt Market

2017 Meeting: Newport Beach, CA March 19-27

AAPT/AI Webinar Series – Fatigue Cracking of Asphalt Pavements

Duration:	3 parts, each 1 Hour. 180 Minutes Total.
Dates/Times:	Part I – Thursday, 20 October 2016, 12:00 – 1:00 PM EDT
	Part II – Thursday, 27 October 2016, 12:00 – 1:00 PM EDT
	Part III – Thursday, 3 November 2016, 12:00 – 1:00 PM EDT
Cost:	Complimentary for AAPT Members!
Instructors:	Andrew Braham, Ph.D., P.E., Associate Professor, University of Arkansas Shane Underwood, Ph.D., Assistant Professor, Arizona State University
Moderator:	R. Michael Anderson, P.E., Asphalt Institute Director of Research and Lab Services, Association of Asphalt Paving Technologists Executive Director

Webinar Series Description

AAPT and the Asphalt Institute are hosting a three-part webinar series for understanding of fatigue cracking and a comprehensive review of the laboratory methods for fatigue cracking tests.

inyauctionwatch.com/

NEAUPG 2016

Time and Resources