

NEAUPG Annual Meeting
October 21st and 22nd, 2015
Burlington, VT

Acknowledgements

- Rutgers Staff
 - Chris Ericson, M.S.
 - Darius Pezeshki, M.S.
 - Ed Wass
- Axeon Specialty Products
 - Ron Corun
 - Frank Fee

Urban Pavements

- Northeast urban pavements generally contain heavy, slow moving traffic
 - Biggest cost during rehabilitation are utilities and user delays
- Years of multiple overlays, combined with utility work, result in faulted pavement surfaces requiring variability thickness to maintain cross slope and smoothness

Thin Lift HMA Overlays

- Thin lift asphalt overlays provides a means to preserve the pavement while improving the structural and functional properties of the pavement surface
 - Higher AC% for fatigue
 - Finer aggregate and lower inplace air voids for impermeability
 - Faster construction and more flexibility with respect to handwork and leveling

Project Location: 1st Avenue in NYC

- 1st Avenue in Manhattan is 30 year old 18" thick PCC pavement
- Cost of total replacement far beyond NYC DOT budget for a number of reasons....

1st Avenue in NYC – Underground Utilities

- Utilities beneath the pavement
 - Gas lines
 - Water lines
 - Sewer lines
 - Steam line
- Removing the PCC would most likely damage the utilities
 - NYC DOT tries not to use compaction with vibration when paving streets
 - After paving projects are completed NYC DOT tests utilities for leaks
- Funding not available to replace PCC pavement and the utilities

1st Avenue in NYC - In Addition ...

- NYC is planning to improve bus service with an new bus lane on 1st Avenue and also add a bike lane
- Question How to rehabilitate 1st Avenue?

Rehabilitation Plan

- Rehabilitation Design
 - Micro-mill existing PCC pavement
 - Patch areas as required
 - Crack seal as required
 - Place PG 76-22 tack coat and Mirafi
 PGMG4 fabric
 - Overlay with 1 ½" HPTO mix with HiMA asphalt binder
 - Added Evotherm warm mix additive to lower mix temperatures and improve workability
 - Produced mix at 300°F
- Project completed Sept 2013

1st Avenue Micro-Milling

1st Avenue Micro-Milling

1st Avenue Micro-Milling

1st Avenue Crack Sealing and Patching

1st Avenue Crack Sealing and Patching

1st Avenue Tack Coat and Fabric

Highly Modified Asphalt (HiMA) Mixture

- Mixture designed after NJDOT's High Performance Thin Overlay (HPTO)
 - N_{des} = 50 gyrations
 - VMA > 18%
 - APA rutting < 4.0 mm
 - Overlay Fatigue > 700 cycles
 - Added for this project to ensure fatigue cracking resistance

Mixture Summary Report for Varying %AC Analysis Project Name: NuStar NYC HPTO Mix Design N Initial: Workbook Name: N Design: Technician: Tom Bennert N Max: 4/24/12 Nom. Sieve Size: Asphalt Grade: FlexGard Compaction Temperature: Mixture Temperature: 152°C Design ESAL's (millions): Depth from Surface (mm) 36°C Mold Size: 150 mm Design Temperature:

Results				
6.5% AC	7.0% AC	7.2% AC	7.5% AC	Criteria
6.5	7.0	72	7.5	
7.4	4.0	3.6	2.9	3.5 %
04.0	40.0	40.7	40.0	40.0 % 14:
65.7	79.5	81.7	19.8 85.6	18.0 % Min. 73.0 % Min.
				76.0 % Max
0.8	0.7	0.7	0.7	0.6 - 1.2 %
2.436	2.423	2.416	2.400	
2.256	2.325	2.329	2.331	
05.5	00.0	00.5	07.0	89.0 % Max
85.5	86.3	86.5	87.0	89.0 % Max
92.6	96.0	96.4	97.1	96.5 % Max.
2.692	2.699	2.699	2.691	
1.028	1.028	1.028	1.028	
2.690	2.690	2.690	2.690	
	6.5 7.4 21.6 65.7 0.8 2.436 2.256 85.5 92.6 2.692 1.028	6.5% AC 7.0% AC 6.5 7.0 7.4 4.0 21.6 19.6 65.7 79.5 0.8 0.7 2.436 2.423 2.256 2.325 85.5 86.3 92.6 96.0 2.692 2.699 1.028 1.028	6.5% AC 7.0% AC 7.2% AC 6.5 7.0 7.2 7.4 4.0 3.6 21.6 19.6 19.7 65.7 79.5 81.7 0.8 0.7 0.7 2.436 2.423 2.416 2.256 2.325 2.329 85.5 86.3 86.5 92.6 96.0 96.4 2.692 2.699 2.699 1.028 1.028 1.028	6.5% AC 7.0% AC 7.2% AC 7.5% AC 6.5 7.0 7.2 7.5 7.4 4.0 3.6 2.9 21.6 19.6 19.7 19.8 65.7 79.5 81.7 85.6 0.8 0.7 0.7 0.7 2.436 2.423 2.416 2.400 2.256 2.325 2.329 2.331 85.5 86.3 86.5 87.0 92.6 96.0 96.4 97.1 2.692 2.699 2.691 1.028 1.028 1.028

HiMA vs Typical NYC HMA

- HiMA sampled during production and compared to NYC Surface Course mixture
 - NYC mix sampled from same asphalt plant prior to 1st Avenue project

NYC Surface Course Mixture vs HiMA						
Sieve Number	Opening Size (mm)	NYC Surface Mix	Highly Modified Asphalt (HiMA)			
2.0"	50.00	100.0	100.0			
1.5"	37.50	100.0	100.0			
1.0"	25.00	100.0	100.0			
3/4"	19.00	100.0	100.0			
1/2"	12.50	98.4	100.0			
3/8"	9.50	92.4	99.4			
1/4"	6.39	73.4				
# 4	4.75	59.5	69.5			
1/8"	3.15	43.8				
# 8	2.36	36.8	38.7			
# 16	1.18	26.7	26.9			
# 30	0.60	20.8	19.5			
# 50	0.30	15.2	13.2			
# 100	0.15	9.7	7.0			
# 200	0.075	6.5	3.6			
PG Grade Information (After Extraction and Rotavap Recovery)						
Continuous PG Grade	PG73.9-2	26.1 (21.3)	86.6-31.9 (14.4)			
Asphalt Content (%)	4.8	33%	6.53%			

Asphalt Pavement Analyzer

- AASHTO T₃40
- 100 lb. wheel load; 100 psi hose pressure
- Tested at 64°C (148°F)
 for 8,000 cycles
- Samples at specified air voids
- APA Rutting < 4.0 mm to pass

APA Rutting Results

64°C Test Temp.; 100psi Hose Pressure; 100 lb Load Load

AMPT Flow Number @ 54°C

Overlay Tester

- Sample size: 6" long by 3" wide by 1.5" high
- Loading: Continuously triangular displacement 5 sec loading and 5 sec unloading
- Definition of failure
 - Discontinuity in Load vs
 Displacement curve

Overlay Tester Results

Flexural Beam Fatigue

- Flexural Beam Device,
 AASHTO T321
- Test mixes ability to withstand repeated bending
- Run at strain controlled mode to simulate bending/deformation in the field

Flexural Beam Fatigue Results

1st Avenue Paving on Fabric

1st Avenue Paving — September 2013

1st Avenue Paving — September 2013

1st Avenue Finished HiMA Pavement – September 2013

1st Avenue – November 2014

1st Avenue – November 2014

1st Avenue – June 2015

Conclusions

- Urban pavement systems provide a significant challenge to rehabilitate due to the multiple construction constraints
- Thin lift asphalt mixtures provide a structural and functional asphalt overlay system to help preserve the underlying pavement structure
- For NYC 1st Avenue, a highly modified asphalt (HiMA) was utilized to minimize rutting and fatigue cracking potential
 - WMA additive was used to help achieve low air voids without using vibratory mode on compactor
- 2 years after construction, pavement looks in great conditions – with no utility cuts yet!!!

