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¡ Evaluate different asphalt binder test methods that 
show promise at identifying asphalt binder 
durability/fatigue performance

¡ Evaluate different asphalt mixture performance tests 
that can be utilized to determine fatigue performance 
of asphalt mixtures

¡ Propose:
§ A purchase specification that can be used to specify asphalt 

binder performance to minimum fatigue damage
§ A quality control test that can be used to evaluate fatigue 

performance of asphalt mixtures



¡ Stiffness of materials
§ Aging & test temperature will play a significant role on 

the stiffness of the asphalt binder
§ Important that when comparing binder and mixture 

testing, materials are evaluated at similar conditions 
(i.e. – aging and temperature).

§ Differences in loading rates – may be harder to quantify 
due to volume/specimen size effects

¡ Field projects provide for good comparison and 
also provide field performance

¡ Lab testing needs to verify materials are 
conditioned in a similar manner



¡ Currently, there is no agreed upon means of 
conditioning asphalt binder and mixtures that will 
result in the same “stiffness”
§ NCHRP 9-54:  Long-Term Aging of Asphalt Mixtures for 

Performance Testing and Prediction
§ NCHRP 9-59:  Relating Asphalt Binder Fatigue Properties to 

Asphalt Mixture Fatigue Properties
§ NCHRP 9-61: Short- and Long-Term Binder Aging Methods 

to Accurately Reflect Aging in Asphalt Mixtures
¡ Therefore, field cores and plant produced asphalt 

mixtures provide best means to develop relationships
§ Field cores also provide field performance! 





¡ No rutting
¡ Longitudinal and 

transverse cracking 
observed

¡ Cracking top-down
§ Stops approximately 

0.5” to 0.75” below 
surface
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¡ Asphalt binder testing conducted every 0.5” to 
evaluate change in binder properties due to aging

¡ Asphalt mixture testing conducted at bottom of 
core to provide “initial” mixture performance





¡ Asphalt binders recovered using 
solvent extraction and Rotovapor
Recovery

¡ Binder testing included;
§ PG grading (intermediate & Low PG )
§ Master curves

▪ Rheological Properties
▪ Glover-Rowe Parameter

§ Double Edge Notched Tension (DENT)
§ Linear Amplitude Sweep (LAS)
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¡ Ductility has always been correlated to 
fatigue performance of asphalt mixtures and 
clearly decreases with aging

¡ As asphalt binders age, the relaxation 
properties (m-value) are negatively affected 
at greater rate than the stiffness (S)

¡ The difference between the low temperature 
cracking grade of m-value and S is defined as 
the DTc 

DTc = Tc, S - Tc, m-value

¡ AAPT (Anderson et al., 2011) showed that the 
DTc correlated to non-load associated 
cracking on airfields (i.e. – cracking mainly 
due to aging), as well as ductility
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¡ Test evaluates the energy 
required for fracturing 
ductile materials
§ Test measures the Work of 

Fracture and Critical Opening 
Displacement (CTOD)

§ CTOD represents ultimate 
elongation, or strain 
tolerance, in the vicinity of a 
crack (i.e. – notch)

§ As CTOD increases, more 
resistant to fracturing

L

80 mm

30 mm L = 5, 10 and 15 mm
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¡ Due to equipment and material 
size restraints, Ductility testing 
may not be available

¡ Rowe (AAPT, 2011) proposed the 
DSR master curve analysis to 
calculate the “Glover-Rowe” 
parameter
§ As G-R parameter increases, the 

binder is more prone to fatigue 
cracking

§ Correlates to both ductility and 
BBR DTc
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¡ Utilizes cyclic testing in the 
DSR to evaluate the 
undamaged and damaged 
condition of asphalt binders 
under increased accelerated 
damage.

¡ Analysis allows for the 
determination of asphalt 
binder fatigue life (cycles) at 
different shear strain levels

¡ Comparison to FHWA-ALF 
and LTPP sections show 
relatively well correlations
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¡ BBR DTC , DENT CTOD and Glover-Rowe 
properties correlated to field observations
§ Intermediate PG grade & LAS conflicted to field 

observations
¡ “Fatigue” properties of recovered asphalt binder 

improved with depth
§ At depths > 0.75 inches, appears to be little aging

▪ Would change based on in-situ air voids – these mixtures all 
placed at air voids < 6.5%

▪ Regional climatic effects



¡ Recently completed High Recycle with WMA Fatigue 
Cracking Experiment

¡ Focus on fatigue cracking, temp. controlled at 20oC               
§ No high temperature rutting*

¡ Three year completion
§ 2 years of loading
§ 2 ALF units allow simultaneous loading

¡ Unmodified binder for all lanes, but 2 different grades
¡ WMA Technology which does not change PG grade
¡ 10 kip single wheel = 20 kip equivalent axle
¡ Same set of asphalt binder testing as PANYNJ Study



Re-running

Re-running



¡ Cracking performance 
measured and 
quantified in two indices
§ Number of cycles until 1st

Crack observed
§ Cracking Rate 
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¡ Glover-Rowe Parameter and DENT correlated best 
with Crack Initiation (Cycles to 1st Crack)
§ None of the tests correlated well with ALF Crack Rate
§ DTC had moderate correlation – believe it was due to 

only 20 hour PAV, most likely needed 40 hours to 
differentiate binders with high recycle contents



¡ The Glover-Rowe and DENT test methods appear 
to best capture the field fatigue performance of 
the asphalt mixtures
§ Glover-Rowe requires DSR
§ DENT requires ductilometer

¡ DTC has potential but most likely requires 40 hr of 
PAV conditioning

¡ LAS and intermediate temperature grade did not 
correlate well to field performance





¡ Consistency in results are important to spec 
development
§ Binder and mixture test should tell the same story

¡ Test methods used were at standard conditions
§ No change in loading rate, etc.

¡ Binder and mixture tests conducted on material of 
same aged condition (extracted from field cores)
§ Laboratory conditioning methods required to conduct 

laboratory evaluation – discussed later
¡ Limitations

§ Testing conducted on limited binder type
§ Testing conducted on limited specimen type (i.e. – field core) 



¡ Uses 3-point bending on a 
semi-circular asphalt sample

¡ Can use same equipment at 
AASHTO T283 (50 mm/min)

¡ Notch cut to initiate cracking
¡ Test evaluates the energy 

required to fracture the 
specimen and propagate a 
crack at the notch
§ Work of Fracture

¡ Additional analysis was used 
to calculate the Flexibility 
Index (FI)  
§ Post peak response



§ Sample size: 6’’ long by 3’’ wide by 1.5’’ 
high

§ Loading: Continuously triangular 
displacement 5 sec loading and 5 sec 
unloading

§ Definition of failure
▪ Discontinuity in Load vs 

Displacement curve 

Fixed plate

2 mm (0.08 in)

Aluminum plates

150 mm (6 in)

Sample

Movable plate
plate

Ram direction

38 mm (1.5 in)



¡ Semi-circulate test 
specimen

¡ Test measures the 
potential energy at failure 
for 3 notch depths

¡ Potential energy plotted vs 
notch depth to compute 
Critical Strain Energy (Jc)

¡ Deformation rate of 0.5 
mm/min
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¡ The SCB Flexibility Index correlated well with 
§ Glover-Rowe
§ DENT

¡ The Overlay Tester had an average correlation with
§ DENT

¡ The LTRC SCB had an average correlation with
§ Glover-Rowe
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¡ Field studies conducted to compare asphalt binder 
and mixture tests to field performance
§ Is there an asphalt binder test that relates to field fatigue 

cracking performance?
§ How do mixture tests compare?

¡ Two large field studies indicated that Glover-Rowe and 
DENT test show promise as asphalt binder tests
§ NCHRP 9-59 also looking at DENT

¡ Practical issues to consider
§ DENT requires more binder & separate piece of equipment
§ Both tests need further development to determine 

thresholds for cracking performance  
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