

Current Participants

- New Hampshire (NHDOT) Lead Agency
- Maryland (MDOT)
- New Jersey (NJDOT)
- New York (NYSDOT)
- Pennsylvania (PennDOT)
- Rhode Island (RIDOT)
- Virginia (VDOT)
- Federal Highway Administration (FHWA)

3

Project Objectives

- Evaluate the performance of plant-produced RAP mixtures (in the laboratory and field) in terms of low temperature cracking, fatigue cracking and moisture sensitivity.
- Provide further understanding of the blending that occurs between RAP and virgin binder in plant-produced mixtures.

ŀ

Testing

- · Recovered Binder
 - PG grade
 - CCT
 - G* master curve
- Mixture
 - Dynamic Modulus
 - Hamburg & TSR
 - Low Temperature Creep & Strength
 - Fatigue (AMPT S-VECD protocol): crack initiation
 - Overlay Tester: crack propagation
 - Beam Flexure

5

Project Status

- Phase I (2010 season): All mixture testing completed. Binder testing being redone. Research team doing detailed analysis on all sets of mixtures for an interim report.
- Phase II (2011 season): Silo storage, NH field mixtures, VA mixtures. Testing and data analysis ongoing.
 Determination of S-VECD failure criteria.
- Phase III (2013 season): laboratory study to evaluate effect of bumping binder grade and increasing virgin asphalt content. Testing underway.
- Future Phases: based on results of Phase III, and questions remaining from Phase II

Phase I Mixtures: 2010 Production

Plant	NMAS (mm)	PG Grade	RAP Content (%)			
			0	20	30	40
Callanan NY	12.5	64-22	X	x	x	х
(drum)		58-28			x	х
Pike VT (batch)	9.5	58-28	х	x	х	Х
		52-34	x	x	x	х
Pike NH (drum)	12.5	64-28	x	X	x	x

Phase I Conclusions

- Specimen preparation matters (PMLC vs PMPC)
- Softer binder grade effective in some cases, not in others
- Impact of plant production parameters
 - Mixing temperature
 - Silo storage time

17

Phase II Mixtures: 2011 Production

- Silo Storage Study
 - NY 12.5 mm mixture with PG 64-22
 - Virgin: 0, 2.5, 5.0, 7.5 hours storage (~340 F)
 - 25% RAP: 0, 2.5, 5.0, 7.5, 10.0 hours storage (~340 F)
- NH mixtures field sections
 - PG 58-28: 0%, 15%, 25% RAP
 - PG 52-34: 25%, 30%, 40% RAP
- VA mixtures
 - PG 76-22: 0% RAP
 - PG 70-22: 20% RAP
 - PG 64-22: 30%, 40% RAP

Silo Storage Study

- 25% RAP mixtures
 - Increase in stiffness with longer storage times
 - Observed in binder and mixture testing
 - Implies additional aging is occurring in silo
 - Can't separate aging vs additional blending

19

Phase III Testing Plan

- Controlled laboratory study
- Examine impact of binder grade and total asphalt content
- Use NH mixtures from Phase I to compare with plant produced mixtures

Phase III Testing Plan

Missture	Asphalt	RAP Content (total weight)				
Mixture	content	0	20	40		
NH Phase I	ontimum	DC 64 30	PG 64-28	PG 64-28		
	optimum	PG 64-28	PG58-28	PG 58-28		
	.0.50/		DC C4 30	PG 64-28		
	+0.5%	-	PG 64-28	(PG 58-28)		
	.1.00/			PG 64-28		
	+1.0%	-	-	(PG 58-28)		

21

Phase III Testing Plan

- Binder Testing
 - PG grading including CCT
 - G* master curves
- Mixture Testing
 - Volumetrics at N_{des}
 - |E*|
 - S-VECD fatigue
 - Triaxial Stress Sweep for rutting
 - TSRST

Additional Phases

- Additional laboratory studies on other mixtures based on results of Phase III
- Additional plant produced mixtures based on results of Phase III
- New silo storage study
- Combination of warm mix technologies and high RAP

