

Moisture Susceptibility Testing of New England Mixtures

PI: Eshan V. Dave Co-PIs: Jo Sias Daniel, Rajib Mallick

Eshan.Dave@unh.edu

Presenter/Researcher: Chris DeCarlo

Christopher.j.Decarlo@usace.army.mil

October 18th, 2018

Acknowledgements

- NETC 15-3 Technical Panel
- Derek Nener-Plante (Chair) MaineDOT
- Andy Willete VTrans
- Eliana Carlson ConnDOT
- Mark Brum MassDOT
- Beran Black NHDOT

Project Background

- Moisture susceptibility: Extent to which an asphalt mixture is prone to experiencing moisture induced damage
- Moisture Damage results in significant reduction of pavement performance and service life
- Testing methods need to be able to <u>effectively</u> and <u>reliably</u> capture the extent of moisture damage susceptibility
 - Some New England DOTs have struggled with this recently

Project Objectives

- Evaluate good and poor performing asphalt mixtures in New England
 - Assess mechanisms responsible for poor performing mixtures
- Measure impacts of moisture induced-damage on pavement performance and service life
- Recommend a framework of testing and analysis procedures that is reliable and suitable for moisture susceptibility testing in New England

Test Plan Development

Mixture Selection

- Mixtures chosen on the basis of feedback from agency survey
- Goal was to incorporate a wide variety of properties
 - Mix designs
 - Volumetric properties
 - Aggregate Minerology
 - Binder Properties
 - Liquid Anti-Strip Additives (type and dosage)
 - Location/Climate
 - Historical Performance

Mixture Selection

- 10 mixtures sampled
 - 3 good performers, 7 poor performers
 - 5 from Maine
 - 3 from Vermont
 - 1 from Connecticut and New Hampshire

Mixture Selection Table

Mix	Description
<u>MEP1</u>	<u>12.5mm Poor, No additive, 64-28</u>
MEP2	12.5mm Poor/Moderate, Amine-based anti-strip additive, 64-28
MEP3	12.5mm Poor, No additive, 64-28
MEP4	12.5mm Poor, No Additive, 64-28
VTP1	9.5mm Poor, WMA/Anti-strip additive, 58-28
<u>VTP2</u>	9.5mm Poor, No additive, 58-28
CTP1	12.5mm Moderate, Amine-based anti-strip additive, 64-22
MEG1	12.5mm Good, No Additive, 64-28
VTG1	12.5mm Good, WMA Additive, 70-28
NHG1	12.5mm Good, No additive, 64-28

University of New Hampshire

Testing Plan Approach

University of New Hampshire

Laboratory Testing and Results

Testing Protocols

- All specimens produced by reheating loose mixture
 - Buckets only used once (no re-heating to minimize aging and variability)
- All specimens produced at 7 +/- 0.5% air voids

AASHTO T283 and ITS

- Most popular moisture susceptibility test
- Main outcome is the Tensile Strength Ratio (TSR)
 - TSR= Average Strength of Conditioned Specimens Average Strength of Unconditioned Specimens
- Widely used
- Gives indication of cohesion and adhesion of mixes
- Relatively simple

MIST Conditioning

- Moisture induced Stress Tester (ASTM D7870)
- Simulates effect of water under repeated traffic loading at different pressures and temperatures
 - Test temperature
 - 60°C for PG 64-28
 - 50°C for PG 58-28
 - Cycles 3,500
 - Pressure 40 psi
 - Adhesion phase 20 hours (moisture conditioning)
 - Cohesion phase 3.5 hours (pressure cycles)

AASHTO T283 Results

AASHTO TP105 - SCB

- Semi Circular Bend Test (AASHTO TP105)
 - Focused on fatigue cracking evaluation
 - Several alternative analysis methods
 - Typically tested at intermediate temperatures (25C)
 - Illinois method (IFIT) used with MiST conditioning
 - Fracture Energy and Flexibility Index

AASHTO TP105 - SCB

University of New Hampshire

AASHTO TP105 - SCB

AASHTO T342 – Dynamic Modulus

- Measures the stiffness of mixtures at various temperatures and loading frequencies
- Specimen loaded in compression sinusoidally
- Carried out on the Asphalt Mixture Performance Tester (AMPT)
- Dynamic modulus is a fundamental material property (can related to changes in structural capacity of pavement)

Materials

Mix	Description
VTP1	9.5mm Poor Performer, WMA/Anti-strip additive, 58-28
VTP2	9.5mm Poor Performer, No additive, 58-28
VTG1	12.5mm Good Performer, WMA Additive, 70-28

AASHTO T342 – Dynamic Modulus

AASHTO T342 – Dynamic Modulus

AASHTO PavementME

- Mechanistic-Empirical analysis procedure
 - Mechanistic structural response (stress, strains)
 - Empirical distress prediction (transfer functions)
- Dynamic modulus primary asphalt material input
 - Simulated as worst case scenario
 - Only dynamic modulus change-everything else remained constant

PavementME Results-Rutting

PavementME Results-Fatigue

PavementME Results-Roughness

- Simulative test that applies repeated traffic loads through steel wheels (tests conducted on dry and submerged specimens)
- Measure rut depth and number of wheel passes (typically go to 20,000 passes)
- Some agencies already use this for moisture testing, several agencies are already equipped to conduct this test

- Hamburg testing done by Maine DOT
- All mixtures tested at 45C
- Conventional Results-Taken from sheets provided by Maine DOT

Rut Depth vs. Number of Wheel Passes

• 7 Mixtures shown here

Mix	Description
MEG1	12.5mm Poor, No additive
MEP1	12.5mm Poor, No additive
MEP2	12.5mm Poor/Moderate, Amine-based anti-strip additive
VTP1	9.5mm Poor, WMA/Anti-strip additive
VTP2	9.5mm Poor, No additive
VTG1	12.5mm Good, WMA Additive
NHG1	12.5mm Good, No additive

MEP3 < MEP1 < VTP2 < VTP1 < MEP2 < VTG1 < NHG Yellow < Light Blue < Dark Blue < Red < Orange < Green < Purple

Hamburg– TAMU Method

- Proposed by Yin et al. (2015)
- Uses Stripping Number (SN) and Stripping Life Threshold (ST)
- Higher SN and ST \rightarrow Better Moisture Resistance

Hamburg– TAMU Method

• Stripping Life Threshold (ST)

 $LC > LC_{SN}:$ $\varepsilon^{st} = \varepsilon_0^{st} [e^{\theta(LC - LC_{SN})} - 1]$

Remaining Life (LCST)

 Additional load cycles to create 12.5mm rut depth after LC_{SN}

Higher *LC_{ST}* = better resistance to stripping

Hamburg-TAMU Method

University of New Hampshire

Results – Overall Conclusions

- All mixes (good and poor) pass TSR requirements showing lack of distinction in current AASHTO T-283 approach
- Substantial drop in asphalt mix dynamic modulus after MiST conditioning
 - Loss of serviceability and reduced pavement life
- SCB fracture tests did not show promising results with moisture conditioning
- Hamburg wheel tracking test shows most promise at differentiating moisture susceptible mixes
 - Analysis conducted using standard method and new approach

Results – Recommendations

- As a mix design/screening test to ensure adequate field performance, the Hamburg wheel tracker is recommended
 - Both traditional and Texas method work well
- For performance-based design/specifications and life cycle cost-based design, dynamic modulus paired with pavement analysis is recommended.

Questions and Comments?

Thank you for your attention!

