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Project Background
• Moisture susceptibility: Extent to which an asphalt 

mixture is prone to experiencing moisture induced 
damage

• Moisture Damage results in significant reduction of 
pavement performance and service life

• Testing methods need to be able to effectively and 
reliably capture the extent of moisture damage 
susceptibility
• Some New England DOTs have struggled with this recently
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Project Objectives
• Evaluate good and poor performing asphalt mixtures 

in New England
• Assess mechanisms responsible for poor performing 

mixtures

• Measure impacts of moisture induced-damage on 
pavement performance and service life

• Recommend a framework of testing and analysis 
procedures that is reliable and suitable for moisture 
susceptibility testing in New England
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Test Plan Development
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Mixture Selection
• Mixtures chosen on the basis of feedback from agency 

survey 
• Goal was to incorporate a wide variety of properties

• Mix designs
• Volumetric properties
• Aggregate Minerology
• Binder Properties
• Liquid Anti-Strip Additives (type and dosage)
• Location/Climate
• Historical Performance
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Mixture Selection
• 10 mixtures sampled

• 3 good performers, 7 poor performers

• 5 from Maine

• 3 from Vermont

• 1 from Connecticut and New Hampshire
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Mixture Selection Table

* Matching colors indicate same mixtures (design and volumetric) with and 

without some type of anti-strip additive.

Mix Description

MEP1 12.5mm Poor, No additive, 64-28

MEP2 12.5mm Poor/Moderate, Amine-based anti-strip additive, 64-28

MEP3 12.5mm Poor, No additive, 64-28

MEP4 12.5mm Poor, No Additive, 64-28

VTP1 9.5mm Poor, WMA/Anti-strip additive, 58-28

VTP2 9.5mm Poor, No additive, 58-28

CTP1 12.5mm Moderate, Amine-based anti-strip additive, 64-22

MEG1 12.5mm Good, No Additive, 64-28

VTG1 12.5mm Good, WMA Additive, 70-28

NHG1 12.5mm Good, No additive, 64-28



Testing Plan Approach
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Preparation

• Sample materials
• Specimen fabrication and volumetric testing
• Divide specimens into testing sub sets

Conditioning

• Modified Lottman procedure (AASHTO T283)
• MIST (ASTM D7870)
• Multi-cycle freeze-thaw

Laboratory 
Testing

• AASHTO T283: Indirect Tensile Strength
• AASHTO T324: Hamburg Wheel Track
• AASHTO T342: Dynamic Modulus
• Fracture Test: DCT and SCB



Laboratory Testing and Results
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Testing Protocols

• All specimens produced by reheating loose mixture
• Buckets only used once (no re-heating to minimize aging 

and variability)
• All specimens produced at 7 +/- 0.5% air voids



AASHTO T283 and ITS
• Most popular moisture susceptibility test
• Main outcome is the Tensile Strength Ratio (TSR)

• !"#= $%&'()& "*'&+)*h ,- .,+/0*0,+&/ "1&203&+4$%&'()& "*'&+)*h ,- 5+2,+/0*0,+&/ "1&203&+4
• Widely used
• Gives indication of cohesion and adhesion of mixes
• Relatively simple 
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MIST Conditioning
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• Moisture induced Stress Tester (ASTM D7870)
• Simulates effect of water under repeated traffic  

loading at different pressures and temperatures
• Test temperature 

• 60oC for PG 64-28 
• 50oC for PG 58-28

• Cycles – 3,500
• Pressure – 40 psi
• Adhesion phase – 20 hours (moisture conditioning)
• Cohesion phase – 3.5 hours (pressure cycles)
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Ratio results do not 
show distinction 
between good and 
poor mixtures
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Ratio results do not 
show distinction 
between good and 
poor mixtures



AASHTO TP105 - SCB
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• Semi Circular Bend Test (AASHTO TP105)
• Focused on fatigue cracking evaluation
• Several alternative analysis methods
• Typically tested at intermediate temperatures (25C)
• Illinois method (IFIT) used with MiST conditioning

• Fracture Energy and Flexibility Index



AASHTO TP105 - SCB
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AASHTO TP105 - SCB
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AASHTO T342 – Dynamic Modulus

• Measures the stiffness of mixtures at various temperatures and 
loading frequencies

• Specimen loaded in compression sinusoidally
• Carried out on the Asphalt Mixture Performance Tester (AMPT)
• Dynamic modulus is a fundamental material property (can related to 

changes in structural capacity of pavement)
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Materials

36

Mix Description

VTP1 9.5mm Poor Performer, WMA/Anti-strip additive, 58-28

VTP2 9.5mm Poor Performer, No additive, 58-28

VTG1 12.5mm Good Performer, WMA Additive, 70-28



AASHTO T342 – Dynamic Modulus
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Pavement Life Implications?



• Mechanistic-Empirical analysis procedure
• Mechanistic structural response (stress, strains)
• Empirical distress prediction (transfer functions)

• Dynamic modulus – primary asphalt material input
• Simulated as worst case scenario
• Only dynamic modulus change-everything else remained 

constant

AASHTO PavementME
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PavementME Results-Rutting
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Significant Loss of Life



PavementME Results-Fatigue

25

25% Cracked Lane Area Failure Threshold



PavementME Results-Roughness
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172 in/mile Failure Threshold



AASHTO T324 - Hamburg
• Simulative test that applies repeated traffic loads through steel 

wheels (tests conducted on dry and submerged specimens)
• Measure rut depth and number of wheel passes (typically go to 

20,000 passes)
• Some agencies already use this for moisture testing, several 

agencies are already equipped to conduct this test
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AASHTO T324 - Hamburg
• Hamburg testing done by Maine DOT
• All mixtures tested at 45C
• Conventional Results-Taken from sheets provided by Maine DOT
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AASHTO T324 - Hamburg
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Mix Description

MEG1 12.5mm Poor, No additive

MEP1 12.5mm Poor, No additive

MEP2 12.5mm Poor/Moderate, Amine-based anti-strip additive

VTP1 9.5mm Poor, WMA/Anti-strip additive

VTP2 9.5mm Poor, No additive

VTG1 12.5mm Good, WMA Additive

NHG1 12.5mm Good, No additive

• 7 Mixtures shown here



AASHTO T324 - Hamburg
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AASHTO T324 - Hamburg
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Hamburg Results-Traditional
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Much clearer 
distinction between 

good and poor 
performers



Hamburg– TAMU Method
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• Proposed by Yin et al. (2015)
• Uses Stripping Number (SN) and Stripping Life 

Threshold (ST)
• Higher SN and ST à Better Moisture Resistance



Hamburg– TAMU Method
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• Stripping Life Threshold (ST)



Hamburg– TAMU Method
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Clear distinction 
between good and 
poor performers



Results – Overall Conclusions

• All mixes (good and poor) pass TSR requirements 
showing lack of distinction in current AASHTO T-283 
approach

• Substantial drop in asphalt mix dynamic modulus 
after MiST conditioning
• Loss of serviceability and reduced pavement life

• SCB fracture tests did not show promising results 
with moisture conditioning

• Hamburg wheel tracking test shows most promise at 
differentiating moisture susceptible mixes
• Analysis conducted using standard method and new 

approach
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Results – Recommendations
• As a mix design/screening test to ensure 

adequate field performance, the Hamburg 
wheel tracker is recommended
• Both traditional and Texas method work well

• For performance-based design/specifications 
and life cycle cost-based design, dynamic 
modulus paired with pavement analysis is 
recommended.
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Questions and Comments?
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Thank you for your attention!


