The Development and Use of High Performance Thin Overlay Systems

NEAUPG 2009 Annual Meeting Portland, Maine October 8, 2009

Ronald Corun Manager - Asphalt Technical Services NuStar Asphalt Refining LLC

- Not New in use since the early 1900's
- Originally all fine aggregate – plus AC
 - Could work well in low stress application
 - But tended to rut and crack under higher traffic /stress

- City of Rockville, Maryland – 1960's
 - Fine graded Marshall mix with AC-10
 - Named it "Smoothseal"

Ohio DOT

- Borrowed Rockville
 idea and product name
- First use in 1973
- Added polymers in 1990's
- Type A 5/8" thick
 - Sand mix with 8.5% AC
- Type B ³/₄" thick
 - 4.75 mm mix with 6.4% AC

Ohio DOT

- Oldest "Smoothseal™"
 pavement has lasted
 28 years
- Average life of
 "Smoothseal™"
 overlay
 - Over Asphalt 16 years
 - Composite pavement 7-11 years (depending on traffic)

- Superpave research successful in reducing rutting on major highways – typically coarser and drier mixes
- Superpave mixes perhaps not suited for low volume secondary and subdivision roads – including 4.75 mm mix
 - Harder to place handwork issues
 - Harder to compact
 - Shorter life span
 - Durability
 - Fatigue life

- SP 4.75 mm mix
- Re-designed mix to produce <u>High</u> <u>Performance Thin</u> <u>Overlay</u>
- HPTO designed to overcome problems with older Thin Surface Mixes

HPTO Design

- Requirements
 - Improve Durability
 - Higher AC/ film thickness mix (VMA)
 - Dense / nonsegregating mix (inplace density)
 - Rut & Crack
 Resistant
 - PMA Binder
 - High quality aggregates
 - Mix performance test

HPTO – Developed to meet Two Applications

Local & Secondary Roads

- Suburban development
 - Higher traffic and stress on pavement
 - Intolerance of traffic interruption (get-in & get-out and don't come back)
 - Usual maintenance treatments no longer acceptable

Primary & Interstate Hwy

- Budget shortfalls require delays in some normal rehabilitations
- Need to provide a "maintenance" application until next major rehab
- HPTO can provide a solution

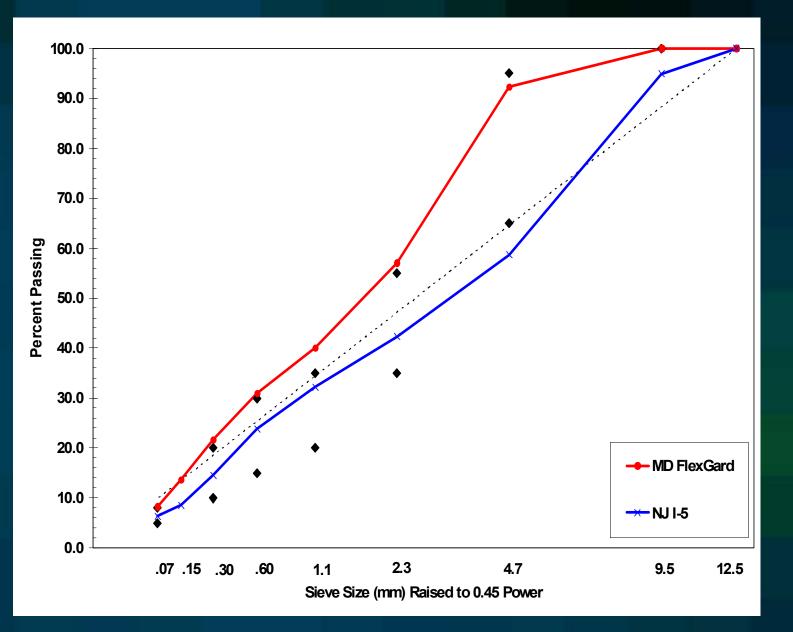
HPTO Applications

Local Use

DOT Use

- Research Objectives
 - Longer life material
 - Adhesion to underlying pavement
 - Rutting
 - Fatigue cracking
 - Durability
 - Use local aggregates
 - Friendly to local contractors
 - Good Constructability
 - Cost effective product
 - Can be placed ³/₄" 1 ¹/₄" thick
 - Little milling required

 Achieving Research Objectives


- Rutting Performance
 - Quality aggregates
 - Good aggregate gradation
 - Specially Engineered Polymer-Modified Asphalt (PMA)
 - Mix performance test (APA, Hamburg, AMPT)

Achieving Research Objectives

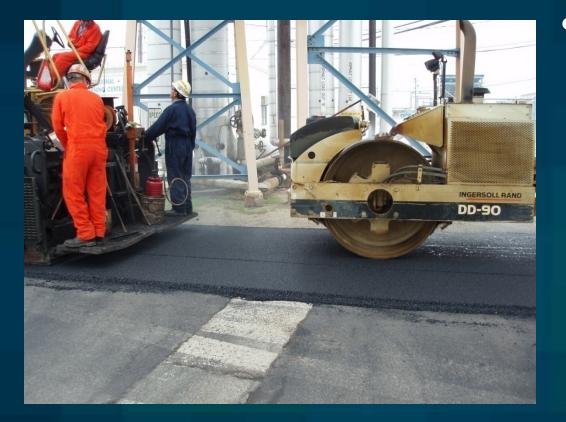
- Fatigue cracking
 - Increased asphalt content
 - Slightly gap-graded mix
 - Mix design at 3% air void target (SGC = 50 gyrations)
 - <u>Minimum 7% asphalt</u> <u>content</u>
 - Specifically designed to increase fatigue life
 - Thicker asphalt film coatings – min. VMA = 18%
 - Greater resistance to aging

HPTO & 9.5 mm Mix Gradation Plot

- Achieving Research Objectives
 - Balanced Performance
 - NCAT test track
 - Higher binder content possible with no rutting when PMA used
 - National study PMA
 - National study increased pavement life of 5-7 years
 - Significant fatigue life improvement

Initial Installation of the HPTO for Local Roads

- NuStar Asphalt Refinery in Paulsboro, NJ
 - Main entrance road
 - 20 year old existing HMA pavement
 - Approximately 5 loaded tanker trucks per day
 - Substantial fatigue cracking
 - Rutting not an issue
 - Minimal pavement deflection under loads


NuStar Asphalt Refinery in Paulsboro, NJ - Full depth HMA patching section in one lane - Compare

performance

Construction objectives

- Adhesion to underlying pavement
 - Require clean and dry pavement
 - Use PG 64-22 as tack coat material
 - Require complete and even coverage

- NuStar Asphalt Refinery in Paulsboro, NJ
 - Constructability
 - Specification density achieved easily
 - 7% AC content and 3% design air voids makes compaction easier

- NuStar Asphalt Refinery in Paulsboro, NJ
 - Constructability
 - Required laydown temperature is only 300° - 310°F

 NuStar Asphalt Refinery in Paulsboro, NJ

- Constructability
 - Handwork not a problem

- NuStar Asphalt Refinery in Paulsboro, NJ
 - Constructability
 - Transverse and longitudinal joints are excellent
 - Project appearance is very good

Paulsboro FlexGard – Pavement Evaluation

 Evaluation each year

 Rut & crack survey
 Pavement coring

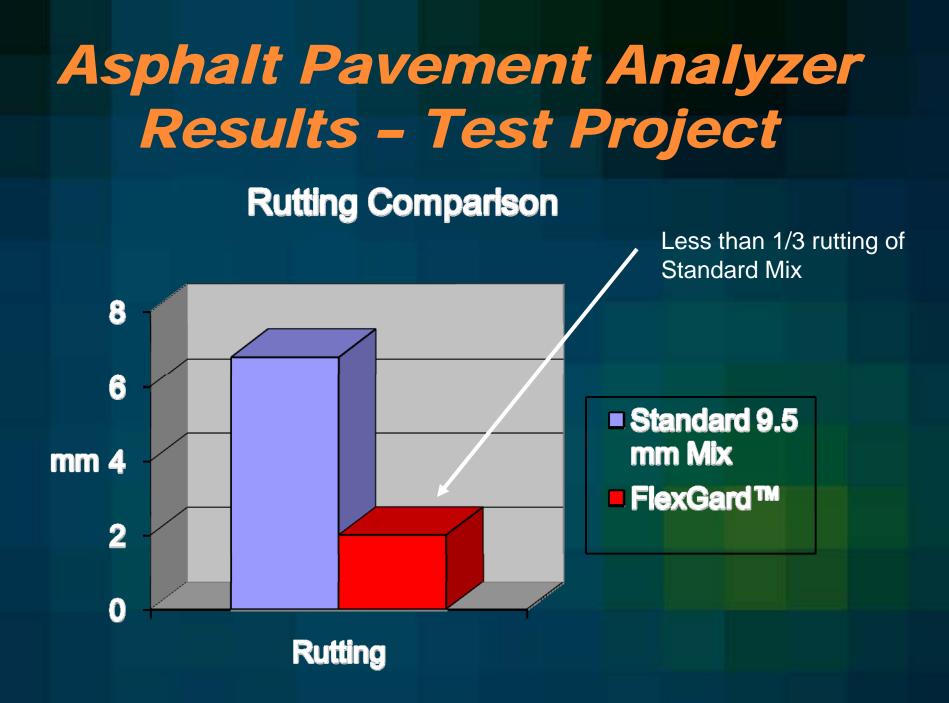
Paulsboro HPTO - Cores

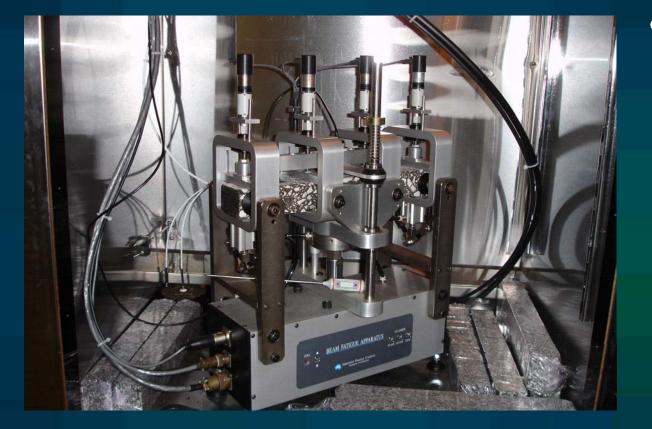
Paulsboro HPTO – after 3 years

Paulsboro HPTO – 3 years old

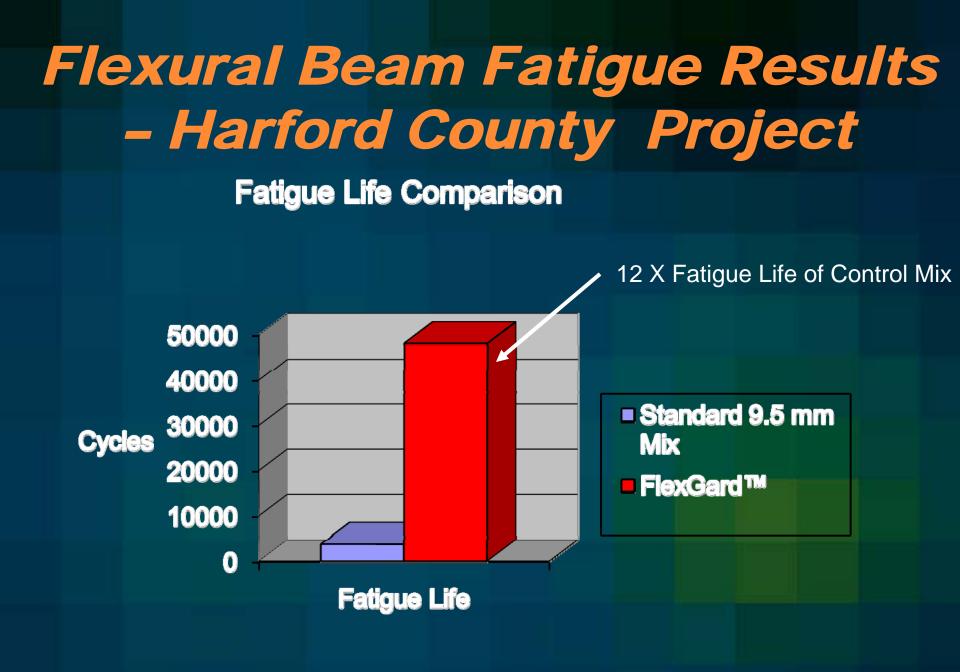
Original

After 3 years

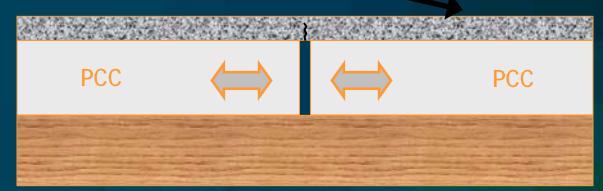


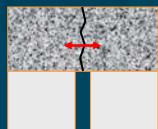

Performance Testing of the FlexGard Mix

- Laboratory Testing
 - Rutting
 - Asphalt Pavement Analyzer (APA)
 - Fatigue Cracking
 - Flexural Beam Fatigue Device
 - Reflective Cracking
 - Texas Overlay Tester
 - Permeability
 - Flexible Wall Permeability
 Tester
 - Skid Friction
 - Skid Trailer



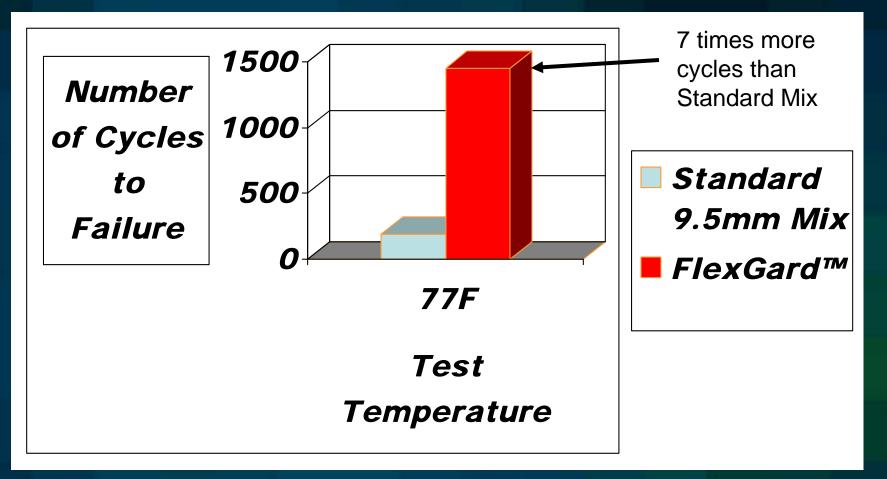
Performance Testing of the FlexGard Mix


 Flexural Beam Fatigue Testing


 Measure number of cycles to failure

<u> Climatic Loading – Horizontal</u> <u>Movement</u>

Hot Mix Asphalt Overlaid on PCC



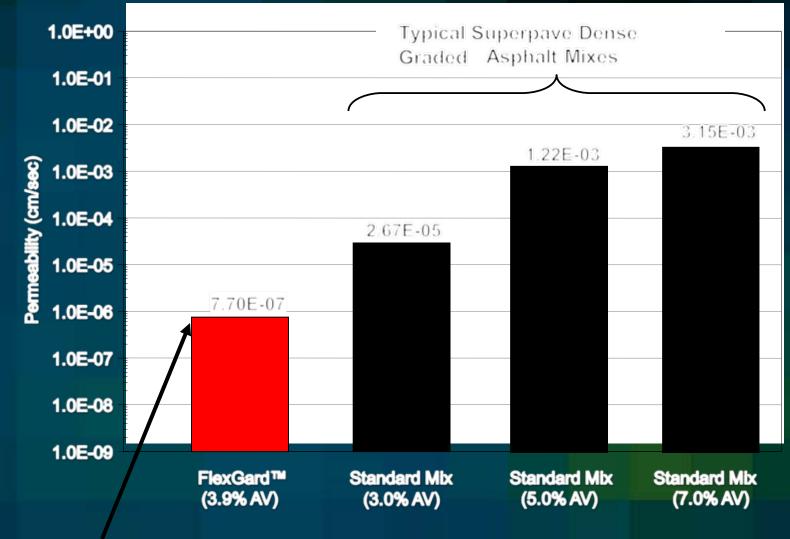
Horizontal Tensile Stress due to Expansion/Contraction of PCC from Temperature

Horizontal Stress/Strain is modeled using Overlay Tester

Overlay Tester Results – Harford County Project

Texas DOT requires minimum of 300 cycles to pass the test

Flexible Wall Permeability Testing



- For Pavement Preservation, important to "seal" pavement to limit moisture
- Permeability on order of a silt/clay, required testing in "Flexible Wall" Permeability Setup

Samples cored from 6-inch diameter gyratory sample

Typical Permeability Values

100 times less permeable

Surface (Skid) Friction, SN40

Material Type	Skid Number
FlexGard™	53
9.5 mm Mix (New)	51.6
9.5 mm Mix (4 Yrs)	54.3
19mm Mix (4 Yrs)	55.7
19mm Mix (5 Yrs)	47.7

DOT Application for Interstate & Primary Roads

- Material needed for 'intermediate' maintenance application (one that extend pavement life but without impact on existing clearances)
- Prefer to use a 'nonproprietary' product
- HPTO can be a solution

NJ DOT HPTO Materials

- New Jersey requirements
 - Thin-lift ≤ 25mm thick (Ideally)
 - eliminate change to existing infrastructure (bridge clearances, drainage, etc.)
 - Minimal Impact to Users (Coverage vs. Unit Time)
 - Re-new and upgrade road surface (Ride Quality - serviceability)
 - No "Cure-time"
 - dependent materials
 - Must withstand high stresses

NJDOT HPTO - Specification

<u>Sieve Size</u>		Percent Passing		
		<u>FlexGard</u>	<u>NJ HPTO</u>	<u>NJ 9.5 mm (l-5)</u>
12.5 mm	¹ ⁄2"	100	100	100
9.5 mm	3/8"	100	100	95
4.75 mm	#4	65-95	65-85	60
2.36 mm	#8	35-55	33-55	42
1.18 mm	#16	20-35	20-35	32
0.60 mm	#30	15-30	15-30	24
0.30 mm	#50	10-20	10-20	15
0.075 mm	#200	4-10	5-8	6.3
Binder Type		FlexGard XP	PG 76-22 (PMA)	PG 64-22
Minimum AC%		7.0%	7.0%	5.1
% Air Voids		3.0%	3.5%	4.0
VMA		> 18%	> 18%	16.3
SGC N _{des}		50	50	75
APA Rutting		Max. 5 mm	Max. 4 mm	

NJ I-295 HPTO Project

NJ I-295 HPTO Project

NJ I-295 HPTO Project

FlexGard / HPTO System Summary

- Can be designed for county / municipal roads as well as Interstate highways
- Based on lab tests & project performance to date – should provide longer life than conventional mix (9.5mm)
- User friendly local materials and contractors
- Cost effective alternative to "mill & fill"
- Good performance to date for state agencies with PMA
 - Ohio DOT
 - NJ DOT HPTO
 - NYSDOT 6.3 mm mix

