NCAT Pavement Test Track

- ----

Implementation Content

Materials
Mixes
Structures
Construction
Preservation

Materials

Expanded use of local/underutilized stockpiles Use of (fractionated) RAP & processed PC-RAS "Healthy" binder content for mix durability (BMD) Economical use of polymer modified binders GTR for sustainable binder modification Aramid fibers to improve mix durability (PFC) Highly polymer modified asphalt (HiMA).

Targeted Use of High Polymer Mixes

1007

Local Aggregates

AT AUBURN UNIVERSITY

Mixes

 Transition to Superpave/gyratory mix designs Reduction in design laboratory compaction Choosing between SMA and DGA mix options Aged binder ratio (ABR) mix design philosophy "Healthier" binder content in balanced mix design Cracking test needed for design approval & QC (!) Benefits of smaller NMAS and/or finer mixes.

Reflective Cracking

Crack Map (Recent Cracks in Solid Red, Potential Reflective Cracks in Blue, Patches Outlined

RAP BR = 29%

Aged BR = 41% RAP BR = 20%

RAS BR = 21%

Crack Map (Recent Cracks in Solid Red, Potential Reflective Cracks in Blue, Patches Outlined in Green, and Trucking Percent Complete via Height of Gray Map Date Box)

National Center for Asphalt Technology NCAT at AUBURN UNIVERSITY

Fine versus Coarse Gradations

MnR

nal Center for ut Technology

Smaller NMAS "Thinlay" Mix

NCAT West Curve Cam 1970-01-06 23:43:51

Smaller NMAS "Thinlay" Mix

Before rolling

4.6 mm in APA

←After rolling

Need for a <u>Production</u> Cracking Test !

BBF

SCB-LA

I-FIT

от-тх

OT-NCAT

SVECD

MnRQAD

DCT

Energy Ratio

Nflex Factor

Cantabro

Structures

• "M-E" versus "E" pavement buildup design Need for local calibration & strain thresholds Consideration for alternative materials/layers Layer coefficient increase from 0.44 to 0.54 Reduces to 0.15 for OGFSC/PFC surfaces, but... Fog sealing prolongs OGFC/PFC surface life • $0.36 \le 100\%$ RAP CCPR base mix ≤ 0.39 .

RAP₁₁+RAS₃ Thinlays₂₀ on Cold Recycle

at AUBURN UNIVERSIT

Construction

WMA and higher aged binder ratio (ABR) mixes
Less distinction between HMA and WMA
Smaller NMAS and/or finer aggregate blends
Longitudinal joint quality/performance
Prevention of premature/reflective distresses
Tack coat is <u>critical</u> to pavement performance (!).

Strategic Use of RAP, RAS, GTR, & WMA

Purpose of Each Layer	N5 Control	S5 Higher RAP	S6 RAP+RAS	S13 Recyc Tires
Durable, Rut	20% RAP ₂₀	25% RAP ₁₁	5% RAS ₂₁	VIRGIN
Resistant Surface	67-22/82-16 DG	67-22/76-22 SMA	67-22/88-16 SMA	82-22 ₁₂ SMA
Stiff, Strain	35% RAP ₃₉	50%/RAP ₄₁	50% AGED ₂₆₋₂₄	35% RAP ₃₇
Reducing Middle	67-22/88-10 DG	67-22/82-16 DG	67-22/94-10 DG	82-22 ₁₂ DG
Fatigue Resistant	35% RAP ₃₉	35% RAP ₃₄	25% RAP ₂₄	VIRGIN
Base Layer	67-22/88-10 DG	94-28/94-10 DG	+76-22/88-16 DG	88-22 ₂₀ AZ

Green = Evotherm Q1 Additive, Blue = Astec Green Foamer

Effect of Increased Tack Rate

Preservation

Crack sealing improves cracking performance
Scrub seals exhibit both crack & chip seal benefit
Treatments reduce subgrade moisture, but...
Robust treatments provide more life extension
Objective selection of preservation alternatives.

Preservation Selection Process

Time / Traffic

			1			Cra	cking	g (L=	Low	, M=	Med	lium	, H=I	High)					De	form	atio	n (L=	Low,	M=	Med	ium,	, H=I	High)	2.1			1			
Treatment PCI	PCI	Fatigue ^b / Long WP ^c / Slippage			Block			Transverse Thermal ^c			Joint Reflection		Long / Edge ^d		Wear / Stable ^e Rutting			Corrug / Shove			Bumps / Sags			Patches			Raveling / Weather			Ride	Friction	Noise			
		L	M	н	L	M	H	L	M	H	L	м	н	L	M	н	L	M	H	L	Μ	н	Ľ	м	н	L	м	н	L	M	H				
	Crack Filling	75-90																	1					111											
	Crack Sealing	80-95		-	177	1	-																												
	Single Chip Seal	70-85																																	
	Double Chip Seal	70-85																					1.01												
	Slurry Sealing	70-85																																	
	Single Micro Surface	70-85																																	
U	tra-Thin Bonded HMA Overlay	65-85																																	
	½" to ¾" HMA Overlay	65-85																				-													
	%" to 1½" HMA Overlay	60-80			1.0																														
	Mill & HMA Overlay	60-75																																	
	Hot In-Place & HMA Overlay ^a	70-85																							1.1					-					
- }	Cold In-Place & HMA Overlay ^a	60-75																																	

^a Surface recycle with a thin HMA overlay

^b Fatigue (alligator) cracking: L=<1/4" width or <10% area; M=1/4 to 1/2" or 10-20% area; H=1/2" or 20-30% area

^c Longitudinal wheelpath and transverse cracking: L=<1/4" width; M=1/4 to 1/2"; H=1/2" width

^d Edge cracking: L=no material loss; M=0-10% material loss; H=>10% material loss

^e Stable rutting is related to densification, not plastic deformation

f Green=highly or generally recommended in SHRP 2 Report S2-R26-RR-2; Red=not recommended by the preservation industry due to > 1/4" width of unsealed cracks

FAA

	an mar series of the	- A	
	Good	Fair Condition	Poor
Surface Treatment	Condition	(PCI=60)	Condition
	(PCI=80)		(PCI=40)
Fog Seal	3 - 5	1 - 3	1 – 2
Chip Seal	7 - 10	3 - 5	1 – 3
Slurry Seal	7 – 10	3 - 5	1 – 3
Microsurfacing	8 – 12	5 - 7	2 – 4
Ultrathin Bonded Wearing Course	10+	5 - 10+	2 - 10
Thin HMA	10 - 12	5 - 7	2 – 4

MnRQAD

at AUBURN UNIVERSIT

MnRQAD

at AUBURN UNIVERSITY

at AUBURN UNIVERSITY

Lee Road 159 Low Traffic Preservation

80k ESALS

30

Lee Road 159 Pavement Preservation Experiment to Reduce the Cost to Maintain Your Roads

Funding Provided by Alabama, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, and FP2 via Auburn University and the Lee County Commission

US-280 High Traffic Preservation

612M Vehicles, 2M ESALS

Perpetual Pavement Top-Down Cracking Crack Map (Recent Cracks in Solid Red, Potential Reflective Cracks in Blue, Patches Outlined in Green, and Trucking Percent Complete via Height of Gray Map Date Box) Iransverse Offset (feet 12 10 8 1/13/14 25 125 175 50 75 100 150 200 Longitudinal Distance from Far Transverse Joint (feet) Approx. Cracked Areas: Lane: 21% LWP: 16% RWP: 22% National Center for MnRQAD at AUBURN UNIVERSITY

Perpetual Pavement Top-Down Cracking

Untreated control

Crack Sealing in Thinner Pavements

SINGLE MICRO SURFACE SINGLE MICRO SURFACE + CRACK SEALING

Current Track Research Focus Balanced mix design (design and construction) Design w/lime modification, cement stabilization Effect of high-to-low density on performance Interlayers to reduce reflective cracking Single pass full depth rapid reconstruction Soybean-based biopolymer asphalt modification Thinlays and ultra thinlays for preservation. Validation of laboratory cracking tests (aging).

Reflective Crack Prevention

Full Depth Rapid Rebuild

hin

Central Plant Cold Recycling

In-Place Cold Recycling

Cold Climate Sections

MnROAD Cold Recycling/FDR

Northern OGFC on Low Volume Loop

at AUBURN UNIVERSITY

2018 TEST TRACK CONFERENCE

MARCH 23-25, 2021 AUBURN, AL

National Center for Asphalt Technology

at AUBURN UNIVERSITY

www.ncat.us

Dr. R. Buzz Powell, PE

Assistant Director

277 Technology Parkway Auburn, AL 36830

Phone: (334) 844-6857 Cell: (334) 750-6293

Email: <u>buzz@auburn.edu</u> Web: <u>www.pavetrack.com</u> Twitter: <u>www.twitter.com/pavetrack</u>

